This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | seqeq3 | |- ( F = G -> seq M ( .+ , F ) = seq M ( .+ , G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( F = G -> ( F ` ( x + 1 ) ) = ( G ` ( x + 1 ) ) ) |
|
| 2 | 1 | oveq2d | |- ( F = G -> ( y .+ ( F ` ( x + 1 ) ) ) = ( y .+ ( G ` ( x + 1 ) ) ) ) |
| 3 | 2 | opeq2d | |- ( F = G -> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. = <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) |
| 4 | 3 | mpoeq3dv | |- ( F = G -> ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) = ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) ) |
| 5 | fveq1 | |- ( F = G -> ( F ` M ) = ( G ` M ) ) |
|
| 6 | 5 | opeq2d | |- ( F = G -> <. M , ( F ` M ) >. = <. M , ( G ` M ) >. ) |
| 7 | rdgeq12 | |- ( ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) = ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) /\ <. M , ( F ` M ) >. = <. M , ( G ` M ) >. ) -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) , <. M , ( G ` M ) >. ) ) |
|
| 8 | 4 6 7 | syl2anc | |- ( F = G -> rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) = rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) , <. M , ( G ` M ) >. ) ) |
| 9 | 8 | imaeq1d | |- ( F = G -> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) , <. M , ( G ` M ) >. ) " _om ) ) |
| 10 | df-seq | |- seq M ( .+ , F ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( F ` ( x + 1 ) ) ) >. ) , <. M , ( F ` M ) >. ) " _om ) |
|
| 11 | df-seq | |- seq M ( .+ , G ) = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( y .+ ( G ` ( x + 1 ) ) ) >. ) , <. M , ( G ` M ) >. ) " _om ) |
|
| 12 | 9 10 11 | 3eqtr4g | |- ( F = G -> seq M ( .+ , F ) = seq M ( .+ , G ) ) |