This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Euler-Mascheroni constant is positive. (Contributed by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | emgt0 | |- 0 < gamma |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | log2le1 | |- ( log ` 2 ) < 1 |
|
| 2 | 2rp | |- 2 e. RR+ |
|
| 3 | relogcl | |- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
|
| 4 | 2 3 | ax-mp | |- ( log ` 2 ) e. RR |
| 5 | 1re | |- 1 e. RR |
|
| 6 | 4 5 | posdifi | |- ( ( log ` 2 ) < 1 <-> 0 < ( 1 - ( log ` 2 ) ) ) |
| 7 | 1 6 | mpbi | |- 0 < ( 1 - ( log ` 2 ) ) |
| 8 | emcl | |- gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) |
|
| 9 | 5 4 | resubcli | |- ( 1 - ( log ` 2 ) ) e. RR |
| 10 | 9 5 | elicc2i | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) <-> ( gamma e. RR /\ ( 1 - ( log ` 2 ) ) <_ gamma /\ gamma <_ 1 ) ) |
| 11 | 10 | simp2bi | |- ( gamma e. ( ( 1 - ( log ` 2 ) ) [,] 1 ) -> ( 1 - ( log ` 2 ) ) <_ gamma ) |
| 12 | 8 11 | ax-mp | |- ( 1 - ( log ` 2 ) ) <_ gamma |
| 13 | 0re | |- 0 e. RR |
|
| 14 | emre | |- gamma e. RR |
|
| 15 | 13 9 14 | ltletri | |- ( ( 0 < ( 1 - ( log ` 2 ) ) /\ ( 1 - ( log ` 2 ) ) <_ gamma ) -> 0 < gamma ) |
| 16 | 7 12 15 | mp2an | |- 0 < gamma |