This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imacosupp | |- ( ( F e. V /\ G e. W ) -> ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppco | |- ( ( F e. V /\ G e. W ) -> ( ( F o. G ) supp Z ) = ( `' G " ( F supp Z ) ) ) |
|
| 2 | 1 | imaeq2d | |- ( ( F e. V /\ G e. W ) -> ( G " ( ( F o. G ) supp Z ) ) = ( G " ( `' G " ( F supp Z ) ) ) ) |
| 3 | funforn | |- ( Fun G <-> G : dom G -onto-> ran G ) |
|
| 4 | foimacnv | |- ( ( G : dom G -onto-> ran G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) |
|
| 5 | 3 4 | sylanb | |- ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( `' G " ( F supp Z ) ) ) = ( F supp Z ) ) |
| 6 | 2 5 | sylan9eq | |- ( ( ( F e. V /\ G e. W ) /\ ( Fun G /\ ( F supp Z ) C_ ran G ) ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) |
| 7 | 6 | ex | |- ( ( F e. V /\ G e. W ) -> ( ( Fun G /\ ( F supp Z ) C_ ran G ) -> ( G " ( ( F o. G ) supp Z ) ) = ( F supp Z ) ) ) |