This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of iota. (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iota1 | |- ( E! x ph -> ( ph <-> ( iota x ph ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | |- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
|
| 2 | sp | |- ( A. x ( ph <-> x = z ) -> ( ph <-> x = z ) ) |
|
| 3 | iotaval | |- ( A. x ( ph <-> x = z ) -> ( iota x ph ) = z ) |
|
| 4 | 3 | eqeq2d | |- ( A. x ( ph <-> x = z ) -> ( x = ( iota x ph ) <-> x = z ) ) |
| 5 | 2 4 | bitr4d | |- ( A. x ( ph <-> x = z ) -> ( ph <-> x = ( iota x ph ) ) ) |
| 6 | eqcom | |- ( x = ( iota x ph ) <-> ( iota x ph ) = x ) |
|
| 7 | 5 6 | bitrdi | |- ( A. x ( ph <-> x = z ) -> ( ph <-> ( iota x ph ) = x ) ) |
| 8 | 7 | exlimiv | |- ( E. z A. x ( ph <-> x = z ) -> ( ph <-> ( iota x ph ) = x ) ) |
| 9 | 1 8 | sylbi | |- ( E! x ph -> ( ph <-> ( iota x ph ) = x ) ) |