This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger version of gsumpropd , working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd . (Contributed by Thierry Arnoux, 28-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumpropd2.f | |- ( ph -> F e. V ) |
|
| gsumpropd2.g | |- ( ph -> G e. W ) |
||
| gsumpropd2.h | |- ( ph -> H e. X ) |
||
| gsumpropd2.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
||
| gsumpropd2.c | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
||
| gsumpropd2.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
||
| gsumpropd2.n | |- ( ph -> Fun F ) |
||
| gsumpropd2.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
||
| Assertion | gsumpropd2 | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumpropd2.f | |- ( ph -> F e. V ) |
|
| 2 | gsumpropd2.g | |- ( ph -> G e. W ) |
|
| 3 | gsumpropd2.h | |- ( ph -> H e. X ) |
|
| 4 | gsumpropd2.b | |- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
|
| 5 | gsumpropd2.c | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
|
| 6 | gsumpropd2.e | |- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
|
| 7 | gsumpropd2.n | |- ( ph -> Fun F ) |
|
| 8 | gsumpropd2.r | |- ( ph -> ran F C_ ( Base ` G ) ) |
|
| 9 | eqid | |- ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
|
| 10 | eqid | |- ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 10 | gsumpropd2lem | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |