This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 1 + 2 + 4 + 8 + ... + 2 ^ ( N - 1 ) . (Contributed by Mario Carneiro, 7-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geo2sum2 | |- ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = ( ( 2 ^ N ) - 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 2 | fzoval | |- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN0 -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 4 | 3 | sumeq1d | |- ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) ) |
| 5 | 2cn | |- 2 e. CC |
|
| 6 | 5 | a1i | |- ( N e. NN0 -> 2 e. CC ) |
| 7 | 1ne2 | |- 1 =/= 2 |
|
| 8 | 7 | necomi | |- 2 =/= 1 |
| 9 | 8 | a1i | |- ( N e. NN0 -> 2 =/= 1 ) |
| 10 | id | |- ( N e. NN0 -> N e. NN0 ) |
|
| 11 | 6 9 10 | geoser | |- ( N e. NN0 -> sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
| 12 | 6 10 | expcld | |- ( N e. NN0 -> ( 2 ^ N ) e. CC ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | 13 | a1i | |- ( N e. NN0 -> 1 e. CC ) |
| 15 | 12 14 | subcld | |- ( N e. NN0 -> ( ( 2 ^ N ) - 1 ) e. CC ) |
| 16 | ax-1ne0 | |- 1 =/= 0 |
|
| 17 | 16 | a1i | |- ( N e. NN0 -> 1 =/= 0 ) |
| 18 | 15 14 17 | div2negd | |- ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( ( 2 ^ N ) - 1 ) / 1 ) ) |
| 19 | 12 14 | negsubdi2d | |- ( N e. NN0 -> -u ( ( 2 ^ N ) - 1 ) = ( 1 - ( 2 ^ N ) ) ) |
| 20 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 21 | 20 | negeqi | |- -u ( 2 - 1 ) = -u 1 |
| 22 | 5 13 | negsubdi2i | |- -u ( 2 - 1 ) = ( 1 - 2 ) |
| 23 | 21 22 | eqtr3i | |- -u 1 = ( 1 - 2 ) |
| 24 | 23 | a1i | |- ( N e. NN0 -> -u 1 = ( 1 - 2 ) ) |
| 25 | 19 24 | oveq12d | |- ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
| 26 | 15 | div1d | |- ( N e. NN0 -> ( ( ( 2 ^ N ) - 1 ) / 1 ) = ( ( 2 ^ N ) - 1 ) ) |
| 27 | 18 25 26 | 3eqtr3d | |- ( N e. NN0 -> ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) = ( ( 2 ^ N ) - 1 ) ) |
| 28 | 4 11 27 | 3eqtrd | |- ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = ( ( 2 ^ N ) - 1 ) ) |