This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A + ~~P A , then A is a GCH-set. The much simpler converse to gchhar . (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hargch | |- ( ( har ` A ) ~~ ~P A -> A e. GCH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | |- ( har ` A ) e. On |
|
| 2 | sdomdom | |- ( x ~< ( har ` A ) -> x ~<_ ( har ` A ) ) |
|
| 3 | ondomen | |- ( ( ( har ` A ) e. On /\ x ~<_ ( har ` A ) ) -> x e. dom card ) |
|
| 4 | 1 2 3 | sylancr | |- ( x ~< ( har ` A ) -> x e. dom card ) |
| 5 | onenon | |- ( ( har ` A ) e. On -> ( har ` A ) e. dom card ) |
|
| 6 | 1 5 | ax-mp | |- ( har ` A ) e. dom card |
| 7 | cardsdom2 | |- ( ( x e. dom card /\ ( har ` A ) e. dom card ) -> ( ( card ` x ) e. ( card ` ( har ` A ) ) <-> x ~< ( har ` A ) ) ) |
|
| 8 | 4 6 7 | sylancl | |- ( x ~< ( har ` A ) -> ( ( card ` x ) e. ( card ` ( har ` A ) ) <-> x ~< ( har ` A ) ) ) |
| 9 | 8 | ibir | |- ( x ~< ( har ` A ) -> ( card ` x ) e. ( card ` ( har ` A ) ) ) |
| 10 | harcard | |- ( card ` ( har ` A ) ) = ( har ` A ) |
|
| 11 | 9 10 | eleqtrdi | |- ( x ~< ( har ` A ) -> ( card ` x ) e. ( har ` A ) ) |
| 12 | elharval | |- ( ( card ` x ) e. ( har ` A ) <-> ( ( card ` x ) e. On /\ ( card ` x ) ~<_ A ) ) |
|
| 13 | 12 | simprbi | |- ( ( card ` x ) e. ( har ` A ) -> ( card ` x ) ~<_ A ) |
| 14 | 11 13 | syl | |- ( x ~< ( har ` A ) -> ( card ` x ) ~<_ A ) |
| 15 | cardid2 | |- ( x e. dom card -> ( card ` x ) ~~ x ) |
|
| 16 | domen1 | |- ( ( card ` x ) ~~ x -> ( ( card ` x ) ~<_ A <-> x ~<_ A ) ) |
|
| 17 | 4 15 16 | 3syl | |- ( x ~< ( har ` A ) -> ( ( card ` x ) ~<_ A <-> x ~<_ A ) ) |
| 18 | 14 17 | mpbid | |- ( x ~< ( har ` A ) -> x ~<_ A ) |
| 19 | domnsym | |- ( x ~<_ A -> -. A ~< x ) |
|
| 20 | 18 19 | syl | |- ( x ~< ( har ` A ) -> -. A ~< x ) |
| 21 | 20 | con2i | |- ( A ~< x -> -. x ~< ( har ` A ) ) |
| 22 | sdomen2 | |- ( ( har ` A ) ~~ ~P A -> ( x ~< ( har ` A ) <-> x ~< ~P A ) ) |
|
| 23 | 22 | notbid | |- ( ( har ` A ) ~~ ~P A -> ( -. x ~< ( har ` A ) <-> -. x ~< ~P A ) ) |
| 24 | 21 23 | imbitrid | |- ( ( har ` A ) ~~ ~P A -> ( A ~< x -> -. x ~< ~P A ) ) |
| 25 | imnan | |- ( ( A ~< x -> -. x ~< ~P A ) <-> -. ( A ~< x /\ x ~< ~P A ) ) |
|
| 26 | 24 25 | sylib | |- ( ( har ` A ) ~~ ~P A -> -. ( A ~< x /\ x ~< ~P A ) ) |
| 27 | 26 | alrimiv | |- ( ( har ` A ) ~~ ~P A -> A. x -. ( A ~< x /\ x ~< ~P A ) ) |
| 28 | 27 | olcd | |- ( ( har ` A ) ~~ ~P A -> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 29 | relen | |- Rel ~~ |
|
| 30 | 29 | brrelex2i | |- ( ( har ` A ) ~~ ~P A -> ~P A e. _V ) |
| 31 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 32 | 30 31 | sylibr | |- ( ( har ` A ) ~~ ~P A -> A e. _V ) |
| 33 | elgch | |- ( A e. _V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
|
| 34 | 32 33 | syl | |- ( ( har ` A ) ~~ ~P A -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
| 35 | 28 34 | mpbird | |- ( ( har ` A ) ~~ ~P A -> A e. GCH ) |