This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hartogs number of a well-orderable set strictly dominates the set. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harsdom | |- ( A e. dom card -> A ~< ( har ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harndom | |- -. ( har ` A ) ~<_ A |
|
| 2 | harcl | |- ( har ` A ) e. On |
|
| 3 | onenon | |- ( ( har ` A ) e. On -> ( har ` A ) e. dom card ) |
|
| 4 | 2 3 | ax-mp | |- ( har ` A ) e. dom card |
| 5 | domtri2 | |- ( ( ( har ` A ) e. dom card /\ A e. dom card ) -> ( ( har ` A ) ~<_ A <-> -. A ~< ( har ` A ) ) ) |
|
| 6 | 5 | con2bid | |- ( ( ( har ` A ) e. dom card /\ A e. dom card ) -> ( A ~< ( har ` A ) <-> -. ( har ` A ) ~<_ A ) ) |
| 7 | 4 6 | mpan | |- ( A e. dom card -> ( A ~< ( har ` A ) <-> -. ( har ` A ) ~<_ A ) ) |
| 8 | 1 7 | mpbiri | |- ( A e. dom card -> A ~< ( har ` A ) ) |