This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinc.b | |- B = ( Base ` D ) |
|
| functhinc.c | |- C = ( Base ` E ) |
||
| functhinc.h | |- H = ( Hom ` D ) |
||
| functhinc.j | |- J = ( Hom ` E ) |
||
| functhinc.d | |- ( ph -> D e. Cat ) |
||
| functhinc.e | |- ( ph -> E e. ThinCat ) |
||
| functhinc.f | |- ( ph -> F : B --> C ) |
||
| functhinc.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
||
| functhinc.1 | |- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
||
| functhinclem4.1 | |- .1. = ( Id ` D ) |
||
| functhinclem4.i | |- I = ( Id ` E ) |
||
| functhinclem4.x | |- .x. = ( comp ` D ) |
||
| functhinclem4.o | |- O = ( comp ` E ) |
||
| Assertion | functhinclem4 | |- ( ( ph /\ G = K ) -> A. a e. B ( ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) /\ A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinc.b | |- B = ( Base ` D ) |
|
| 2 | functhinc.c | |- C = ( Base ` E ) |
|
| 3 | functhinc.h | |- H = ( Hom ` D ) |
|
| 4 | functhinc.j | |- J = ( Hom ` E ) |
|
| 5 | functhinc.d | |- ( ph -> D e. Cat ) |
|
| 6 | functhinc.e | |- ( ph -> E e. ThinCat ) |
|
| 7 | functhinc.f | |- ( ph -> F : B --> C ) |
|
| 8 | functhinc.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
|
| 9 | functhinc.1 | |- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
|
| 10 | functhinclem4.1 | |- .1. = ( Id ` D ) |
|
| 11 | functhinclem4.i | |- I = ( Id ` E ) |
|
| 12 | functhinclem4.x | |- .x. = ( comp ` D ) |
|
| 13 | functhinclem4.o | |- O = ( comp ` E ) |
|
| 14 | 6 | ad2antrr | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) |
| 15 | 7 | adantr | |- ( ( ph /\ G = K ) -> F : B --> C ) |
| 16 | 15 | ffvelcdmda | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( F ` a ) e. C ) |
| 17 | simpr | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> a e. B ) |
|
| 18 | 5 | ad2antrr | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> D e. Cat ) |
| 19 | 1 3 10 18 17 | catidcl | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( .1. ` a ) e. ( a H a ) ) |
| 20 | simplr | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> G = K ) |
|
| 21 | oveq1 | |- ( x = v -> ( x H y ) = ( v H y ) ) |
|
| 22 | fveq2 | |- ( x = v -> ( F ` x ) = ( F ` v ) ) |
|
| 23 | 22 | oveq1d | |- ( x = v -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` v ) J ( F ` y ) ) ) |
| 24 | 21 23 | xpeq12d | |- ( x = v -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( v H y ) X. ( ( F ` v ) J ( F ` y ) ) ) ) |
| 25 | oveq2 | |- ( y = u -> ( v H y ) = ( v H u ) ) |
|
| 26 | fveq2 | |- ( y = u -> ( F ` y ) = ( F ` u ) ) |
|
| 27 | 26 | oveq2d | |- ( y = u -> ( ( F ` v ) J ( F ` y ) ) = ( ( F ` v ) J ( F ` u ) ) ) |
| 28 | 25 27 | xpeq12d | |- ( y = u -> ( ( v H y ) X. ( ( F ` v ) J ( F ` y ) ) ) = ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
| 29 | 24 28 | cbvmpov | |- ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
| 30 | 8 29 | eqtri | |- K = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
| 31 | 20 30 | eqtrdi | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> G = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) ) |
| 32 | 9 | ad2antrr | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 33 | 17 17 32 | functhinclem2 | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( ( F ` a ) J ( F ` a ) ) = (/) -> ( a H a ) = (/) ) ) |
| 34 | 14 16 16 2 4 | thincmo | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> E* p p e. ( ( F ` a ) J ( F ` a ) ) ) |
| 35 | 17 17 19 31 33 34 | functhinclem3 | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( a G a ) ` ( .1. ` a ) ) e. ( ( F ` a ) J ( F ` a ) ) ) |
| 36 | 14 2 4 16 11 35 | thincid | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) ) |
| 37 | 16 | ad2antrr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` a ) e. C ) |
| 38 | 7 | ad4antr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> F : B --> C ) |
| 39 | simplrr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> c e. B ) |
|
| 40 | 38 39 | ffvelcdmd | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` c ) e. C ) |
| 41 | 17 | ad2antrr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> a e. B ) |
| 42 | 5 | ad4antr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> D e. Cat ) |
| 43 | simplrl | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> b e. B ) |
|
| 44 | simprl | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> m e. ( a H b ) ) |
|
| 45 | simprr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> n e. ( b H c ) ) |
|
| 46 | 1 3 12 42 41 43 39 44 45 | catcocl | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( n ( <. a , b >. .x. c ) m ) e. ( a H c ) ) |
| 47 | 31 | ad2antrr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> G = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) ) |
| 48 | 9 | ad4antr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 49 | 41 39 48 | functhinclem2 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` a ) J ( F ` c ) ) = (/) -> ( a H c ) = (/) ) ) |
| 50 | 6 | ad4antr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) |
| 51 | 50 37 40 2 4 | thincmo | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` a ) J ( F ` c ) ) ) |
| 52 | 41 39 46 47 49 51 | functhinclem3 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) e. ( ( F ` a ) J ( F ` c ) ) ) |
| 53 | 14 | thinccd | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. Cat ) |
| 54 | 53 | ad2antrr | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. Cat ) |
| 55 | 38 43 | ffvelcdmd | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` b ) e. C ) |
| 56 | 41 43 48 | functhinclem2 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` a ) J ( F ` b ) ) = (/) -> ( a H b ) = (/) ) ) |
| 57 | 50 37 55 2 4 | thincmo | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` a ) J ( F ` b ) ) ) |
| 58 | 41 43 44 47 56 57 | functhinclem3 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G b ) ` m ) e. ( ( F ` a ) J ( F ` b ) ) ) |
| 59 | 43 39 48 | functhinclem2 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` b ) J ( F ` c ) ) = (/) -> ( b H c ) = (/) ) ) |
| 60 | 50 55 40 2 4 | thincmo | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` b ) J ( F ` c ) ) ) |
| 61 | 43 39 45 47 59 60 | functhinclem3 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( b G c ) ` n ) e. ( ( F ` b ) J ( F ` c ) ) ) |
| 62 | 2 4 13 54 37 55 40 58 61 | catcocl | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) e. ( ( F ` a ) J ( F ` c ) ) ) |
| 63 | 37 40 52 62 2 4 50 | thincmo2 | |- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
| 64 | 63 | ralrimivva | |- ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) -> A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
| 65 | 64 | ralrimivva | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
| 66 | 36 65 | jca | |- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) /\ A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) ) |
| 67 | 66 | ralrimiva | |- ( ( ph /\ G = K ) -> A. a e. B ( ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) /\ A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) ) |