This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| functhinc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| functhinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| functhinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| functhinc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| functhinc.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | ||
| functhinc.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| functhinc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| functhinc.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | ||
| functhinclem4.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | ||
| functhinclem4.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | ||
| functhinclem4.x | ⊢ · = ( comp ‘ 𝐷 ) | ||
| functhinclem4.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| Assertion | functhinclem4 | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | functhinc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | functhinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | functhinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | functhinc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 6 | functhinc.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | |
| 7 | functhinc.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 8 | functhinc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 9 | functhinc.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | |
| 10 | functhinclem4.1 | ⊢ 1 = ( Id ‘ 𝐷 ) | |
| 11 | functhinclem4.i | ⊢ 𝐼 = ( Id ‘ 𝐸 ) | |
| 12 | functhinclem4.x | ⊢ · = ( comp ‘ 𝐷 ) | |
| 13 | functhinclem4.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 14 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ ThinCat ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
| 17 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) | |
| 18 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 19 | 1 3 10 18 17 | catidcl | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( 1 ‘ 𝑎 ) ∈ ( 𝑎 𝐻 𝑎 ) ) |
| 20 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐺 = 𝐾 ) | |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 𝐻 𝑦 ) = ( 𝑣 𝐻 𝑦 ) ) | |
| 22 | fveq2 | ⊢ ( 𝑥 = 𝑣 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑣 ) ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 24 | 21 23 | xpeq12d | ⊢ ( 𝑥 = 𝑣 → ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑣 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑢 → ( 𝑣 𝐻 𝑦 ) = ( 𝑣 𝐻 𝑢 ) ) | |
| 26 | fveq2 | ⊢ ( 𝑦 = 𝑢 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑢 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) |
| 28 | 25 27 | xpeq12d | ⊢ ( 𝑦 = 𝑢 → ( ( 𝑣 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 29 | 24 28 | cbvmpov | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 30 | 8 29 | eqtri | ⊢ 𝐾 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 31 | 20 30 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐺 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
| 32 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 33 | 17 17 32 | functhinclem2 | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) = ∅ → ( 𝑎 𝐻 𝑎 ) = ∅ ) ) |
| 34 | 14 16 16 2 4 | thincmo | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) ) |
| 35 | 17 17 19 31 33 34 | functhinclem3 | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑎 ) ) ) |
| 36 | 14 2 4 16 11 35 | thincid | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ) |
| 37 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝐶 ) |
| 38 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 39 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑐 ∈ 𝐵 ) | |
| 40 | 38 39 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ 𝐶 ) |
| 41 | 17 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 42 | 5 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐷 ∈ Cat ) |
| 43 | simplrl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑏 ∈ 𝐵 ) | |
| 44 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ) | |
| 45 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) | |
| 46 | 1 3 12 42 41 43 39 44 45 | catcocl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ∈ ( 𝑎 𝐻 𝑐 ) ) |
| 47 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐺 = ( 𝑣 ∈ 𝐵 , 𝑢 ∈ 𝐵 ↦ ( ( 𝑣 𝐻 𝑢 ) × ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
| 48 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 49 | 41 39 48 | functhinclem2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) = ∅ → ( 𝑎 𝐻 𝑐 ) = ∅ ) ) |
| 50 | 6 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐸 ∈ ThinCat ) |
| 51 | 50 37 40 2 4 | thincmo | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
| 52 | 41 39 46 47 49 51 | functhinclem3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
| 53 | 14 | thinccd | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → 𝐸 ∈ Cat ) |
| 54 | 53 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → 𝐸 ∈ Cat ) |
| 55 | 38 43 | ffvelcdmd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( 𝐹 ‘ 𝑏 ) ∈ 𝐶 ) |
| 56 | 41 43 48 | functhinclem2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) = ∅ → ( 𝑎 𝐻 𝑏 ) = ∅ ) ) |
| 57 | 50 37 55 2 4 | thincmo | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) ) |
| 58 | 41 43 44 47 56 57 | functhinclem3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑏 ) ) ) |
| 59 | 43 39 48 | functhinclem2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) = ∅ → ( 𝑏 𝐻 𝑐 ) = ∅ ) ) |
| 60 | 50 55 40 2 4 | thincmo | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ∃* 𝑝 𝑝 ∈ ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
| 61 | 43 39 45 47 59 60 | functhinclem3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ∈ ( ( 𝐹 ‘ 𝑏 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
| 62 | 2 4 13 54 37 55 40 58 61 | catcocl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ∈ ( ( 𝐹 ‘ 𝑎 ) 𝐽 ( 𝐹 ‘ 𝑐 ) ) ) |
| 63 | 37 40 52 62 2 4 50 | thincmo2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∧ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ) ) → ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
| 64 | 63 | ralrimivva | ⊢ ( ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
| 65 | 64 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) |
| 66 | 36 65 | jca | ⊢ ( ( ( 𝜑 ∧ 𝐺 = 𝐾 ) ∧ 𝑎 ∈ 𝐵 ) → ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( 1 ‘ 𝑎 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑚 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑛 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑛 ( 〈 𝑎 , 𝑏 〉 · 𝑐 ) 𝑚 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 𝑂 ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑚 ) ) ) ) |