This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isthincd2lem1.1 | |- ( ph -> X e. B ) |
|
| isthincd2lem1.2 | |- ( ph -> Y e. B ) |
||
| isthincd2lem1.3 | |- ( ph -> F e. ( X H Y ) ) |
||
| isthincd2lem1.4 | |- ( ph -> G e. ( X H Y ) ) |
||
| thincmo2.b | |- B = ( Base ` C ) |
||
| thincmo2.h | |- H = ( Hom ` C ) |
||
| thincmo2.c | |- ( ph -> C e. ThinCat ) |
||
| Assertion | thincmo2 | |- ( ph -> F = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isthincd2lem1.1 | |- ( ph -> X e. B ) |
|
| 2 | isthincd2lem1.2 | |- ( ph -> Y e. B ) |
|
| 3 | isthincd2lem1.3 | |- ( ph -> F e. ( X H Y ) ) |
|
| 4 | isthincd2lem1.4 | |- ( ph -> G e. ( X H Y ) ) |
|
| 5 | thincmo2.b | |- B = ( Base ` C ) |
|
| 6 | thincmo2.h | |- H = ( Hom ` C ) |
|
| 7 | thincmo2.c | |- ( ph -> C e. ThinCat ) |
|
| 8 | 5 6 | isthinc | |- ( C e. ThinCat <-> ( C e. Cat /\ A. x e. B A. y e. B E* f f e. ( x H y ) ) ) |
| 9 | 8 | simprbi | |- ( C e. ThinCat -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
| 10 | 7 9 | syl | |- ( ph -> A. x e. B A. y e. B E* f f e. ( x H y ) ) |
| 11 | 1 2 3 4 10 | isthincd2lem1 | |- ( ph -> F = G ) |