This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinclem2.x | |- ( ph -> X e. B ) |
|
| functhinclem2.y | |- ( ph -> Y e. B ) |
||
| functhinclem2.1 | |- ( ph -> A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) ) |
||
| Assertion | functhinclem2 | |- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem2.x | |- ( ph -> X e. B ) |
|
| 2 | functhinclem2.y | |- ( ph -> Y e. B ) |
|
| 3 | functhinclem2.1 | |- ( ph -> A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) ) |
|
| 4 | simpl | |- ( ( x = X /\ y = Y ) -> x = X ) |
|
| 5 | 4 | fveq2d | |- ( ( x = X /\ y = Y ) -> ( F ` x ) = ( F ` X ) ) |
| 6 | simpr | |- ( ( x = X /\ y = Y ) -> y = Y ) |
|
| 7 | 6 | fveq2d | |- ( ( x = X /\ y = Y ) -> ( F ` y ) = ( F ` Y ) ) |
| 8 | 5 7 | oveq12d | |- ( ( x = X /\ y = Y ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 9 | 8 | eqeq1d | |- ( ( x = X /\ y = Y ) -> ( ( ( F ` x ) J ( F ` y ) ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
| 10 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
|
| 11 | 10 | eqeq1d | |- ( ( x = X /\ y = Y ) -> ( ( x H y ) = (/) <-> ( X H Y ) = (/) ) ) |
| 12 | 9 11 | imbi12d | |- ( ( x = X /\ y = Y ) -> ( ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) <-> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) ) |
| 13 | 12 | rspc2gv | |- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) ) |
| 14 | 13 | imp | |- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) ) -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
| 15 | 1 2 3 14 | syl21anc | |- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |