This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functhinc . The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinclem3.x | |- ( ph -> X e. B ) |
|
| functhinclem3.y | |- ( ph -> Y e. B ) |
||
| functhinclem3.m | |- ( ph -> M e. ( X H Y ) ) |
||
| functhinclem3.g | |- ( ph -> G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) ) |
||
| functhinclem3.1 | |- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
||
| functhinclem3.2 | |- ( ph -> E* n n e. ( ( F ` X ) J ( F ` Y ) ) ) |
||
| Assertion | functhinclem3 | |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinclem3.x | |- ( ph -> X e. B ) |
|
| 2 | functhinclem3.y | |- ( ph -> Y e. B ) |
|
| 3 | functhinclem3.m | |- ( ph -> M e. ( X H Y ) ) |
|
| 4 | functhinclem3.g | |- ( ph -> G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) ) |
|
| 5 | functhinclem3.1 | |- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
|
| 6 | functhinclem3.2 | |- ( ph -> E* n n e. ( ( F ` X ) J ( F ` Y ) ) ) |
|
| 7 | simprl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
|
| 8 | simprr | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
|
| 9 | 7 8 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
| 10 | 7 | fveq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` x ) = ( F ` X ) ) |
| 11 | 8 | fveq2d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` y ) = ( F ` Y ) ) |
| 12 | 10 11 | oveq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 13 | 9 12 | xpeq12d | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 14 | ovex | |- ( X H Y ) e. _V |
|
| 15 | ovex | |- ( ( F ` X ) J ( F ` Y ) ) e. _V |
|
| 16 | 14 15 | xpex | |- ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) e. _V |
| 17 | 16 | a1i | |- ( ph -> ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) e. _V ) |
| 18 | 4 13 1 2 17 | ovmpod | |- ( ph -> ( X G Y ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 19 | eqid | |- ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) |
|
| 20 | 19 5 6 | mofeu | |- ( ph -> ( ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) <-> ( X G Y ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) ) |
| 21 | 18 20 | mpbird | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
| 22 | 21 3 | ffvelcdmd | |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |