This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered ( catprs2 ), and can be obtained from funcf2 , f002 , and ralrimivva . (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinc.b | |- B = ( Base ` D ) |
|
| functhinc.c | |- C = ( Base ` E ) |
||
| functhinc.h | |- H = ( Hom ` D ) |
||
| functhinc.j | |- J = ( Hom ` E ) |
||
| functhinc.d | |- ( ph -> D e. Cat ) |
||
| functhinc.e | |- ( ph -> E e. ThinCat ) |
||
| functhinc.f | |- ( ph -> F : B --> C ) |
||
| functhinc.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
||
| functhinc.1 | |- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
||
| Assertion | functhinc | |- ( ph -> ( F ( D Func E ) G <-> G = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinc.b | |- B = ( Base ` D ) |
|
| 2 | functhinc.c | |- C = ( Base ` E ) |
|
| 3 | functhinc.h | |- H = ( Hom ` D ) |
|
| 4 | functhinc.j | |- J = ( Hom ` E ) |
|
| 5 | functhinc.d | |- ( ph -> D e. Cat ) |
|
| 6 | functhinc.e | |- ( ph -> E e. ThinCat ) |
|
| 7 | functhinc.f | |- ( ph -> F : B --> C ) |
|
| 8 | functhinc.k | |- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
|
| 9 | functhinc.1 | |- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
|
| 10 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 11 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 12 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 13 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 14 | 6 | thinccd | |- ( ph -> E e. Cat ) |
| 15 | 1 2 3 4 10 11 12 13 5 14 | isfunc | |- ( ph -> ( F ( D Func E ) G <-> ( F : B --> C /\ G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) |
| 16 | 3anass | |- ( ( F : B --> C /\ G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) <-> ( F : B --> C /\ ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) |
|
| 17 | 15 16 | bitrdi | |- ( ph -> ( F ( D Func E ) G <-> ( F : B --> C /\ ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) ) |
| 18 | 7 17 | mpbirand | |- ( ph -> ( F ( D Func E ) G <-> ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) |
| 19 | funcf2lem | |- ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) <-> ( G e. _V /\ G Fn ( B X. B ) /\ A. v e. B A. u e. B ( v G u ) : ( v H u ) --> ( ( F ` v ) J ( F ` u ) ) ) ) |
|
| 20 | simprl | |- ( ( ph /\ ( v e. B /\ u e. B ) ) -> v e. B ) |
|
| 21 | simprr | |- ( ( ph /\ ( v e. B /\ u e. B ) ) -> u e. B ) |
|
| 22 | 9 | adantr | |- ( ( ph /\ ( v e. B /\ u e. B ) ) -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 23 | 20 21 22 | functhinclem2 | |- ( ( ph /\ ( v e. B /\ u e. B ) ) -> ( ( ( F ` v ) J ( F ` u ) ) = (/) -> ( v H u ) = (/) ) ) |
| 24 | 1 2 3 4 6 7 8 23 | functhinclem1 | |- ( ph -> ( ( G e. _V /\ G Fn ( B X. B ) /\ A. v e. B A. u e. B ( v G u ) : ( v H u ) --> ( ( F ` v ) J ( F ` u ) ) ) <-> G = K ) ) |
| 25 | 19 24 | bitrid | |- ( ph -> ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) <-> G = K ) ) |
| 26 | 25 | anbi1d | |- ( ph -> ( ( G e. X_ c e. ( B X. B ) ( ( ( F ` ( 1st ` c ) ) J ( F ` ( 2nd ` c ) ) ) ^m ( H ` c ) ) /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) <-> ( G = K /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) |
| 27 | 18 26 | bitrd | |- ( ph -> ( F ( D Func E ) G <-> ( G = K /\ A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | functhinclem4 | |- ( ( ph /\ G = K ) -> A. a e. B ( ( ( a G a ) ` ( ( Id ` D ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) /\ A. b e. B A. c e. B A. f e. ( a H b ) A. g e. ( b H c ) ( ( a G c ) ` ( g ( <. a , b >. ( comp ` D ) c ) f ) ) = ( ( ( b G c ) ` g ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` f ) ) ) ) |
| 29 | 27 28 | mpbiran3d | |- ( ph -> ( F ( D Func E ) G <-> G = K ) ) |