This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| thincmo.x | |- ( ph -> X e. B ) |
||
| thincmo.y | |- ( ph -> Y e. B ) |
||
| thincmo.b | |- B = ( Base ` C ) |
||
| thincmo.h | |- H = ( Hom ` C ) |
||
| Assertion | thincmo | |- ( ph -> E* f f e. ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincmo.c | |- ( ph -> C e. ThinCat ) |
|
| 2 | thincmo.x | |- ( ph -> X e. B ) |
|
| 3 | thincmo.y | |- ( ph -> Y e. B ) |
|
| 4 | thincmo.b | |- B = ( Base ` C ) |
|
| 5 | thincmo.h | |- H = ( Hom ` C ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> X e. B ) |
| 7 | 3 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> Y e. B ) |
| 8 | simprl | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> f e. ( X H Y ) ) |
|
| 9 | simprr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> g e. ( X H Y ) ) |
|
| 10 | 1 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> C e. ThinCat ) |
| 11 | 6 7 8 9 4 5 10 | thincmo2 | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( X H Y ) ) ) -> f = g ) |
| 12 | 11 | ex | |- ( ph -> ( ( f e. ( X H Y ) /\ g e. ( X H Y ) ) -> f = g ) ) |
| 13 | 12 | alrimivv | |- ( ph -> A. f A. g ( ( f e. ( X H Y ) /\ g e. ( X H Y ) ) -> f = g ) ) |
| 14 | eleq1w | |- ( f = g -> ( f e. ( X H Y ) <-> g e. ( X H Y ) ) ) |
|
| 15 | 14 | mo4 | |- ( E* f f e. ( X H Y ) <-> A. f A. g ( ( f e. ( X H Y ) /\ g e. ( X H Y ) ) -> f = g ) ) |
| 16 | 13 15 | sylibr | |- ( ph -> E* f f e. ( X H Y ) ) |