This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucidcl.q | |- Q = ( C FuncCat D ) |
|
| fucidcl.n | |- N = ( C Nat D ) |
||
| fucidcl.x | |- .1. = ( Id ` D ) |
||
| fucidcl.f | |- ( ph -> F e. ( C Func D ) ) |
||
| Assertion | fucidcl | |- ( ph -> ( .1. o. ( 1st ` F ) ) e. ( F N F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucidcl.q | |- Q = ( C FuncCat D ) |
|
| 2 | fucidcl.n | |- N = ( C Nat D ) |
|
| 3 | fucidcl.x | |- .1. = ( Id ` D ) |
|
| 4 | fucidcl.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 5 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 7 | 6 | simprd | |- ( ph -> D e. Cat ) |
| 8 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 9 | 8 3 | cidfn | |- ( D e. Cat -> .1. Fn ( Base ` D ) ) |
| 10 | 7 9 | syl | |- ( ph -> .1. Fn ( Base ` D ) ) |
| 11 | dffn2 | |- ( .1. Fn ( Base ` D ) <-> .1. : ( Base ` D ) --> _V ) |
|
| 12 | 10 11 | sylib | |- ( ph -> .1. : ( Base ` D ) --> _V ) |
| 13 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 14 | relfunc | |- Rel ( C Func D ) |
|
| 15 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 16 | 14 4 15 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 17 | 13 8 16 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 18 | fcompt | |- ( ( .1. : ( Base ` D ) --> _V /\ ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) -> ( .1. o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
|
| 19 | 12 17 18 | syl2anc | |- ( ph -> ( .1. o. ( 1st ` F ) ) = ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
| 20 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 21 | 7 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 22 | 17 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 23 | 8 20 3 21 22 | catidcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 24 | 23 | ralrimiva | |- ( ph -> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 25 | fvex | |- ( Base ` C ) e. _V |
|
| 26 | mptelixpg | |- ( ( Base ` C ) e. _V -> ( ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) ) |
|
| 27 | 25 26 | ax-mp | |- ( ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) <-> A. x e. ( Base ` C ) ( .1. ` ( ( 1st ` F ) ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 28 | 24 27 | sylibr | |- ( ph -> ( x e. ( Base ` C ) |-> ( .1. ` ( ( 1st ` F ) ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 29 | 19 28 | eqeltrd | |- ( ph -> ( .1. o. ( 1st ` F ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) ) |
| 30 | 7 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> D e. Cat ) |
| 31 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> x e. ( Base ` C ) ) |
|
| 32 | 31 22 | syldan | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 33 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 34 | 17 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 35 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> y e. ( Base ` C ) ) |
|
| 36 | 34 35 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 37 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 38 | 16 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 39 | 13 37 20 38 31 35 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 40 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
|
| 41 | 39 40 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 42 | 8 20 3 30 32 33 36 41 | catlid | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 43 | 8 20 3 30 32 33 36 41 | catrid | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 44 | 42 43 | eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
| 45 | fvco3 | |- ( ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) /\ y e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` y ) = ( .1. ` ( ( 1st ` F ) ` y ) ) ) |
|
| 46 | 34 35 45 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. o. ( 1st ` F ) ) ` y ) = ( .1. ` ( ( 1st ` F ) ` y ) ) ) |
| 47 | 46 | oveq1d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( .1. ` ( ( 1st ` F ) ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 48 | fvco3 | |- ( ( ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) /\ x e. ( Base ` C ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
|
| 49 | 34 31 48 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( .1. o. ( 1st ` F ) ) ` x ) = ( .1. ` ( ( 1st ` F ) ` x ) ) ) |
| 50 | 49 | oveq2d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( .1. ` ( ( 1st ` F ) ` x ) ) ) ) |
| 51 | 44 47 50 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) |
| 52 | 51 | ralrimivvva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) |
| 53 | 2 13 37 20 33 4 4 | isnat2 | |- ( ph -> ( ( .1. o. ( 1st ` F ) ) e. ( F N F ) <-> ( ( .1. o. ( 1st ` F ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` x ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( .1. o. ( 1st ` F ) ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` F ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` x ) >. ( comp ` D ) ( ( 1st ` F ) ` y ) ) ( ( .1. o. ( 1st ` F ) ) ` x ) ) ) ) ) |
| 54 | 29 52 53 | mpbir2and | |- ( ph -> ( .1. o. ( 1st ` F ) ) e. ( F N F ) ) |