This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1.a | |- ( ph -> A e. RR ) |
||
| ftc1.b | |- ( ph -> B e. RR ) |
||
| ftc1.le | |- ( ph -> A <_ B ) |
||
| ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
||
| ftc1.d | |- ( ph -> D C_ RR ) |
||
| ftc1.i | |- ( ph -> F e. L^1 ) |
||
| ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
||
| ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
||
| ftc1.j | |- J = ( L |`t RR ) |
||
| ftc1.k | |- K = ( L |`t D ) |
||
| ftc1.l | |- L = ( TopOpen ` CCfld ) |
||
| Assertion | ftc1lem3 | |- ( ph -> F : D --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
|
| 6 | ftc1.d | |- ( ph -> D C_ RR ) |
|
| 7 | ftc1.i | |- ( ph -> F e. L^1 ) |
|
| 8 | ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
|
| 9 | ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
|
| 10 | ftc1.j | |- J = ( L |`t RR ) |
|
| 11 | ftc1.k | |- K = ( L |`t D ) |
|
| 12 | ftc1.l | |- L = ( TopOpen ` CCfld ) |
|
| 13 | 12 | cnfldtopon | |- L e. ( TopOn ` CC ) |
| 14 | ax-resscn | |- RR C_ CC |
|
| 15 | 6 14 | sstrdi | |- ( ph -> D C_ CC ) |
| 16 | resttopon | |- ( ( L e. ( TopOn ` CC ) /\ D C_ CC ) -> ( L |`t D ) e. ( TopOn ` D ) ) |
|
| 17 | 13 15 16 | sylancr | |- ( ph -> ( L |`t D ) e. ( TopOn ` D ) ) |
| 18 | 11 17 | eqeltrid | |- ( ph -> K e. ( TopOn ` D ) ) |
| 19 | 13 | a1i | |- ( ph -> L e. ( TopOn ` CC ) ) |
| 20 | cnpf2 | |- ( ( K e. ( TopOn ` D ) /\ L e. ( TopOn ` CC ) /\ F e. ( ( K CnP L ) ` C ) ) -> F : D --> CC ) |
|
| 21 | 18 19 9 20 | syl3anc | |- ( ph -> F : D --> CC ) |