This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ftc1 . (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| ftc1.a | |- ( ph -> A e. RR ) |
||
| ftc1.b | |- ( ph -> B e. RR ) |
||
| ftc1.le | |- ( ph -> A <_ B ) |
||
| ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
||
| ftc1.d | |- ( ph -> D C_ RR ) |
||
| ftc1.i | |- ( ph -> F e. L^1 ) |
||
| ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
||
| ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
||
| ftc1.j | |- J = ( L |`t RR ) |
||
| ftc1.k | |- K = ( L |`t D ) |
||
| ftc1.l | |- L = ( TopOpen ` CCfld ) |
||
| ftc1.h | |- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
||
| ftc1.e | |- ( ph -> E e. RR+ ) |
||
| ftc1.r | |- ( ph -> R e. RR+ ) |
||
| ftc1.fc | |- ( ( ph /\ y e. D ) -> ( ( abs ` ( y - C ) ) < R -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < E ) ) |
||
| ftc1.x1 | |- ( ph -> X e. ( A [,] B ) ) |
||
| ftc1.x2 | |- ( ph -> ( abs ` ( X - C ) ) < R ) |
||
| Assertion | ftc1lem5 | |- ( ( ph /\ X =/= C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc1.g | |- G = ( x e. ( A [,] B ) |-> S. ( A (,) x ) ( F ` t ) _d t ) |
|
| 2 | ftc1.a | |- ( ph -> A e. RR ) |
|
| 3 | ftc1.b | |- ( ph -> B e. RR ) |
|
| 4 | ftc1.le | |- ( ph -> A <_ B ) |
|
| 5 | ftc1.s | |- ( ph -> ( A (,) B ) C_ D ) |
|
| 6 | ftc1.d | |- ( ph -> D C_ RR ) |
|
| 7 | ftc1.i | |- ( ph -> F e. L^1 ) |
|
| 8 | ftc1.c | |- ( ph -> C e. ( A (,) B ) ) |
|
| 9 | ftc1.f | |- ( ph -> F e. ( ( K CnP L ) ` C ) ) |
|
| 10 | ftc1.j | |- J = ( L |`t RR ) |
|
| 11 | ftc1.k | |- K = ( L |`t D ) |
|
| 12 | ftc1.l | |- L = ( TopOpen ` CCfld ) |
|
| 13 | ftc1.h | |- H = ( z e. ( ( A [,] B ) \ { C } ) |-> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) ) |
|
| 14 | ftc1.e | |- ( ph -> E e. RR+ ) |
|
| 15 | ftc1.r | |- ( ph -> R e. RR+ ) |
|
| 16 | ftc1.fc | |- ( ( ph /\ y e. D ) -> ( ( abs ` ( y - C ) ) < R -> ( abs ` ( ( F ` y ) - ( F ` C ) ) ) < E ) ) |
|
| 17 | ftc1.x1 | |- ( ph -> X e. ( A [,] B ) ) |
|
| 18 | ftc1.x2 | |- ( ph -> ( abs ` ( X - C ) ) < R ) |
|
| 19 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 20 | 2 3 19 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 21 | 20 17 | sseldd | |- ( ph -> X e. RR ) |
| 22 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 23 | 22 8 | sselid | |- ( ph -> C e. ( A [,] B ) ) |
| 24 | 20 23 | sseldd | |- ( ph -> C e. RR ) |
| 25 | 21 24 | lttri2d | |- ( ph -> ( X =/= C <-> ( X < C \/ C < X ) ) ) |
| 26 | 25 | biimpa | |- ( ( ph /\ X =/= C ) -> ( X < C \/ C < X ) ) |
| 27 | 17 | adantr | |- ( ( ph /\ X < C ) -> X e. ( A [,] B ) ) |
| 28 | 21 | adantr | |- ( ( ph /\ X < C ) -> X e. RR ) |
| 29 | simpr | |- ( ( ph /\ X < C ) -> X < C ) |
|
| 30 | 28 29 | ltned | |- ( ( ph /\ X < C ) -> X =/= C ) |
| 31 | eldifsn | |- ( X e. ( ( A [,] B ) \ { C } ) <-> ( X e. ( A [,] B ) /\ X =/= C ) ) |
|
| 32 | 27 30 31 | sylanbrc | |- ( ( ph /\ X < C ) -> X e. ( ( A [,] B ) \ { C } ) ) |
| 33 | fveq2 | |- ( z = X -> ( G ` z ) = ( G ` X ) ) |
|
| 34 | 33 | oveq1d | |- ( z = X -> ( ( G ` z ) - ( G ` C ) ) = ( ( G ` X ) - ( G ` C ) ) ) |
| 35 | oveq1 | |- ( z = X -> ( z - C ) = ( X - C ) ) |
|
| 36 | 34 35 | oveq12d | |- ( z = X -> ( ( ( G ` z ) - ( G ` C ) ) / ( z - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
| 37 | ovex | |- ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) e. _V |
|
| 38 | 36 13 37 | fvmpt | |- ( X e. ( ( A [,] B ) \ { C } ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
| 39 | 32 38 | syl | |- ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 | ftc1lem3 | |- ( ph -> F : D --> CC ) |
| 41 | 1 2 3 4 5 6 7 40 | ftc1lem2 | |- ( ph -> G : ( A [,] B ) --> CC ) |
| 42 | 41 17 | ffvelcdmd | |- ( ph -> ( G ` X ) e. CC ) |
| 43 | 41 23 | ffvelcdmd | |- ( ph -> ( G ` C ) e. CC ) |
| 44 | 42 43 | subcld | |- ( ph -> ( ( G ` X ) - ( G ` C ) ) e. CC ) |
| 45 | 44 | adantr | |- ( ( ph /\ X < C ) -> ( ( G ` X ) - ( G ` C ) ) e. CC ) |
| 46 | 21 | recnd | |- ( ph -> X e. CC ) |
| 47 | 24 | recnd | |- ( ph -> C e. CC ) |
| 48 | 46 47 | subcld | |- ( ph -> ( X - C ) e. CC ) |
| 49 | 48 | adantr | |- ( ( ph /\ X < C ) -> ( X - C ) e. CC ) |
| 50 | 46 47 | subeq0ad | |- ( ph -> ( ( X - C ) = 0 <-> X = C ) ) |
| 51 | 50 | necon3bid | |- ( ph -> ( ( X - C ) =/= 0 <-> X =/= C ) ) |
| 52 | 51 | biimpar | |- ( ( ph /\ X =/= C ) -> ( X - C ) =/= 0 ) |
| 53 | 30 52 | syldan | |- ( ( ph /\ X < C ) -> ( X - C ) =/= 0 ) |
| 54 | 45 49 53 | div2negd | |- ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
| 55 | 42 43 | negsubdi2d | |- ( ph -> -u ( ( G ` X ) - ( G ` C ) ) = ( ( G ` C ) - ( G ` X ) ) ) |
| 56 | 46 47 | negsubdi2d | |- ( ph -> -u ( X - C ) = ( C - X ) ) |
| 57 | 55 56 | oveq12d | |- ( ph -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
| 58 | 57 | adantr | |- ( ( ph /\ X < C ) -> ( -u ( ( G ` X ) - ( G ` C ) ) / -u ( X - C ) ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
| 59 | 39 54 58 | 3eqtr2d | |- ( ( ph /\ X < C ) -> ( H ` X ) = ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) ) |
| 60 | 59 | fvoveq1d | |- ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) ) |
| 61 | 47 | subidd | |- ( ph -> ( C - C ) = 0 ) |
| 62 | 61 | abs00bd | |- ( ph -> ( abs ` ( C - C ) ) = 0 ) |
| 63 | 15 | rpgt0d | |- ( ph -> 0 < R ) |
| 64 | 62 63 | eqbrtrd | |- ( ph -> ( abs ` ( C - C ) ) < R ) |
| 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 23 64 | ftc1lem4 | |- ( ( ph /\ X < C ) -> ( abs ` ( ( ( ( G ` C ) - ( G ` X ) ) / ( C - X ) ) - ( F ` C ) ) ) < E ) |
| 66 | 60 65 | eqbrtrd | |- ( ( ph /\ X < C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
| 67 | 17 | adantr | |- ( ( ph /\ C < X ) -> X e. ( A [,] B ) ) |
| 68 | 24 | adantr | |- ( ( ph /\ C < X ) -> C e. RR ) |
| 69 | simpr | |- ( ( ph /\ C < X ) -> C < X ) |
|
| 70 | 68 69 | gtned | |- ( ( ph /\ C < X ) -> X =/= C ) |
| 71 | 67 70 31 | sylanbrc | |- ( ( ph /\ C < X ) -> X e. ( ( A [,] B ) \ { C } ) ) |
| 72 | 71 38 | syl | |- ( ( ph /\ C < X ) -> ( H ` X ) = ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) ) |
| 73 | 72 | fvoveq1d | |- ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) = ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) ) |
| 74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23 64 17 18 | ftc1lem4 | |- ( ( ph /\ C < X ) -> ( abs ` ( ( ( ( G ` X ) - ( G ` C ) ) / ( X - C ) ) - ( F ` C ) ) ) < E ) |
| 75 | 73 74 | eqbrtrd | |- ( ( ph /\ C < X ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
| 76 | 66 75 | jaodan | |- ( ( ph /\ ( X < C \/ C < X ) ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |
| 77 | 26 76 | syldan | |- ( ( ph /\ X =/= C ) -> ( abs ` ( ( H ` X ) - ( F ` C ) ) ) < E ) |