This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "the sum of A ( j , k ) over the triangular region M <_ j , M <_ k , j + k <_ N ". (Contributed by NM, 31-Dec-2005) (Proof shortened by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fsum0diag.1 | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
|
| Assertion | fsum0diag | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - k ) ) A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum0diag.1 | |- ( ( ph /\ ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) -> A e. CC ) |
|
| 2 | fzfid | |- ( ph -> ( 0 ... N ) e. Fin ) |
|
| 3 | fzfid | |- ( ( ph /\ j e. ( 0 ... N ) ) -> ( 0 ... ( N - j ) ) e. Fin ) |
|
| 4 | fsum0diaglem | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) -> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |
|
| 5 | fsum0diaglem | |- ( ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) -> ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) ) |
|
| 6 | 4 5 | impbii | |- ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) |
| 7 | 6 | a1i | |- ( ph -> ( ( j e. ( 0 ... N ) /\ k e. ( 0 ... ( N - j ) ) ) <-> ( k e. ( 0 ... N ) /\ j e. ( 0 ... ( N - k ) ) ) ) ) |
| 8 | 2 2 3 7 1 | fsumcom2 | |- ( ph -> sum_ j e. ( 0 ... N ) sum_ k e. ( 0 ... ( N - j ) ) A = sum_ k e. ( 0 ... N ) sum_ j e. ( 0 ... ( N - k ) ) A ) |