This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| Assertion | frmd0 | |- (/) = ( 0g ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frmdmnd.m | |- M = ( freeMnd ` I ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 4 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 5 | wrd0 | |- (/) e. Word I |
|
| 6 | 1 2 | frmdbas | |- ( I e. _V -> ( Base ` M ) = Word I ) |
| 7 | 5 6 | eleqtrrid | |- ( I e. _V -> (/) e. ( Base ` M ) ) |
| 8 | 1 2 4 | frmdadd | |- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
| 9 | 7 8 | sylan | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = ( (/) ++ x ) ) |
| 10 | 1 2 | frmdelbas | |- ( x e. ( Base ` M ) -> x e. Word I ) |
| 11 | 10 | adantl | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> x e. Word I ) |
| 12 | ccatlid | |- ( x e. Word I -> ( (/) ++ x ) = x ) |
|
| 13 | 11 12 | syl | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ++ x ) = x ) |
| 14 | 9 13 | eqtrd | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( (/) ( +g ` M ) x ) = x ) |
| 15 | 1 2 4 | frmdadd | |- ( ( x e. ( Base ` M ) /\ (/) e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 16 | 15 | ancoms | |- ( ( (/) e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 17 | 7 16 | sylan | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = ( x ++ (/) ) ) |
| 18 | ccatrid | |- ( x e. Word I -> ( x ++ (/) ) = x ) |
|
| 19 | 11 18 | syl | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ++ (/) ) = x ) |
| 20 | 17 19 | eqtrd | |- ( ( I e. _V /\ x e. ( Base ` M ) ) -> ( x ( +g ` M ) (/) ) = x ) |
| 21 | 2 3 4 7 14 20 | ismgmid2 | |- ( I e. _V -> (/) = ( 0g ` M ) ) |
| 22 | 0g0 | |- (/) = ( 0g ` (/) ) |
|
| 23 | fvprc | |- ( -. I e. _V -> ( freeMnd ` I ) = (/) ) |
|
| 24 | 1 23 | eqtrid | |- ( -. I e. _V -> M = (/) ) |
| 25 | 24 | fveq2d | |- ( -. I e. _V -> ( 0g ` M ) = ( 0g ` (/) ) ) |
| 26 | 22 25 | eqtr4id | |- ( -. I e. _V -> (/) = ( 0g ` M ) ) |
| 27 | 21 26 | pm2.61i | |- (/) = ( 0g ` M ) |