This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for product: if x is (effectively) not free in A and B , it is not free in prod_ k e. A B . (Contributed by Scott Fenton, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfcprod.1 | |- F/_ x A |
|
| nfcprod.2 | |- F/_ x B |
||
| Assertion | nfcprod | |- F/_ x prod_ k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcprod.1 | |- F/_ x A |
|
| 2 | nfcprod.2 | |- F/_ x B |
|
| 3 | df-prod | |- prod_ k e. A B = ( iota y ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 4 | nfcv | |- F/_ x ZZ |
|
| 5 | nfcv | |- F/_ x ( ZZ>= ` m ) |
|
| 6 | 1 5 | nfss | |- F/ x A C_ ( ZZ>= ` m ) |
| 7 | nfv | |- F/ x z =/= 0 |
|
| 8 | nfcv | |- F/_ x n |
|
| 9 | nfcv | |- F/_ x x. |
|
| 10 | 1 | nfcri | |- F/ x k e. A |
| 11 | nfcv | |- F/_ x 1 |
|
| 12 | 10 2 11 | nfif | |- F/_ x if ( k e. A , B , 1 ) |
| 13 | 4 12 | nfmpt | |- F/_ x ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
| 14 | 8 9 13 | nfseq | |- F/_ x seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 15 | nfcv | |- F/_ x ~~> |
|
| 16 | nfcv | |- F/_ x z |
|
| 17 | 14 15 16 | nfbr | |- F/ x seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z |
| 18 | 7 17 | nfan | |- F/ x ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
| 19 | 18 | nfex | |- F/ x E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
| 20 | 5 19 | nfrexw | |- F/ x E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) |
| 21 | nfcv | |- F/_ x m |
|
| 22 | 21 9 13 | nfseq | |- F/_ x seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) |
| 23 | nfcv | |- F/_ x y |
|
| 24 | 22 15 23 | nfbr | |- F/ x seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y |
| 25 | 6 20 24 | nf3an | |- F/ x ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 26 | 4 25 | nfrexw | |- F/ x E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) |
| 27 | nfcv | |- F/_ x NN |
|
| 28 | nfcv | |- F/_ x f |
|
| 29 | nfcv | |- F/_ x ( 1 ... m ) |
|
| 30 | 28 29 1 | nff1o | |- F/ x f : ( 1 ... m ) -1-1-onto-> A |
| 31 | nfcv | |- F/_ x ( f ` n ) |
|
| 32 | 31 2 | nfcsbw | |- F/_ x [_ ( f ` n ) / k ]_ B |
| 33 | 27 32 | nfmpt | |- F/_ x ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 34 | 11 9 33 | nfseq | |- F/_ x seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 35 | 34 21 | nffv | |- F/_ x ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 36 | 35 | nfeq2 | |- F/ x y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 37 | 30 36 | nfan | |- F/ x ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 38 | 37 | nfex | |- F/ x E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 39 | 27 38 | nfrexw | |- F/ x E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 40 | 26 39 | nfor | |- F/ x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 41 | 40 | nfiotaw | |- F/_ x ( iota y ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. z ( z =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> z ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ y = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 42 | 3 41 | nfcxfr | |- F/_ x prod_ k e. A B |