This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of a periodic function is periodic. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fperdvper.f | |- ( ph -> F : RR --> CC ) |
|
| fperdvper.t | |- ( ph -> T e. RR ) |
||
| fperdvper.fper | |- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
||
| fperdvper.g | |- G = ( RR _D F ) |
||
| Assertion | fperdvper | |- ( ( ph /\ x e. dom G ) -> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fperdvper.f | |- ( ph -> F : RR --> CC ) |
|
| 2 | fperdvper.t | |- ( ph -> T e. RR ) |
|
| 3 | fperdvper.fper | |- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
|
| 4 | fperdvper.g | |- G = ( RR _D F ) |
|
| 5 | dvbsss | |- dom ( RR _D F ) C_ RR |
|
| 6 | id | |- ( x e. dom G -> x e. dom G ) |
|
| 7 | 4 | dmeqi | |- dom G = dom ( RR _D F ) |
| 8 | 6 7 | eleqtrdi | |- ( x e. dom G -> x e. dom ( RR _D F ) ) |
| 9 | 5 8 | sselid | |- ( x e. dom G -> x e. RR ) |
| 10 | 9 | adantl | |- ( ( ph /\ x e. dom G ) -> x e. RR ) |
| 11 | 2 | adantr | |- ( ( ph /\ x e. dom G ) -> T e. RR ) |
| 12 | 10 11 | readdcld | |- ( ( ph /\ x e. dom G ) -> ( x + T ) e. RR ) |
| 13 | reopn | |- RR e. ( topGen ` ran (,) ) |
|
| 14 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 15 | ssidd | |- ( ( ph /\ x e. dom G ) -> RR C_ RR ) |
|
| 16 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 17 | 16 | isopn3 | |- ( ( ( topGen ` ran (,) ) e. Top /\ RR C_ RR ) -> ( RR e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) ) |
| 18 | 14 15 17 | sylancr | |- ( ( ph /\ x e. dom G ) -> ( RR e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) ) |
| 19 | 13 18 | mpbii | |- ( ( ph /\ x e. dom G ) -> ( ( int ` ( topGen ` ran (,) ) ) ` RR ) = RR ) |
| 20 | 19 | eqcomd | |- ( ( ph /\ x e. dom G ) -> RR = ( ( int ` ( topGen ` ran (,) ) ) ` RR ) ) |
| 21 | 12 20 | eleqtrd | |- ( ( ph /\ x e. dom G ) -> ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) ) |
| 22 | 8 | adantl | |- ( ( ph /\ x e. dom G ) -> x e. dom ( RR _D F ) ) |
| 23 | 4 | fveq1i | |- ( G ` x ) = ( ( RR _D F ) ` x ) |
| 24 | 23 | eqcomi | |- ( ( RR _D F ) ` x ) = ( G ` x ) |
| 25 | 24 | a1i | |- ( ( ph /\ x e. dom G ) -> ( ( RR _D F ) ` x ) = ( G ` x ) ) |
| 26 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 27 | ffun | |- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
|
| 28 | 26 27 | ax-mp | |- Fun ( RR _D F ) |
| 29 | 28 | a1i | |- ( ph -> Fun ( RR _D F ) ) |
| 30 | funbrfv2b | |- ( Fun ( RR _D F ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
|
| 31 | 29 30 | syl | |- ( ph -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ x e. dom G ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. dom ( RR _D F ) /\ ( ( RR _D F ) ` x ) = ( G ` x ) ) ) ) |
| 33 | 22 25 32 | mpbir2and | |- ( ( ph /\ x e. dom G ) -> x ( RR _D F ) ( G ` x ) ) |
| 34 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 35 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 36 | eqid | |- ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
|
| 37 | ax-resscn | |- RR C_ CC |
|
| 38 | 37 | a1i | |- ( ( ph /\ x e. dom G ) -> RR C_ CC ) |
| 39 | 1 | adantr | |- ( ( ph /\ x e. dom G ) -> F : RR --> CC ) |
| 40 | 34 35 36 38 39 15 | eldv | |- ( ( ph /\ x e. dom G ) -> ( x ( RR _D F ) ( G ` x ) <-> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) ) ) |
| 41 | 33 40 | mpbid | |- ( ( ph /\ x e. dom G ) -> ( x e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) ) |
| 42 | 41 | simprd | |- ( ( ph /\ x e. dom G ) -> ( G ` x ) e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) ) |
| 43 | eqidd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ) |
|
| 44 | fveq2 | |- ( y = d -> ( F ` y ) = ( F ` d ) ) |
|
| 45 | 44 | oveq1d | |- ( y = d -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` d ) - ( F ` ( x + T ) ) ) ) |
| 46 | oveq1 | |- ( y = d -> ( y - ( x + T ) ) = ( d - ( x + T ) ) ) |
|
| 47 | 45 46 | oveq12d | |- ( y = d -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` d ) - ( F ` ( x + T ) ) ) / ( d - ( x + T ) ) ) ) |
| 48 | eldifi | |- ( d e. ( RR \ { ( x + T ) } ) -> d e. RR ) |
|
| 49 | 48 | recnd | |- ( d e. ( RR \ { ( x + T ) } ) -> d e. CC ) |
| 50 | 49 | adantl | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. CC ) |
| 51 | 2 | recnd | |- ( ph -> T e. CC ) |
| 52 | 51 | adantr | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. CC ) |
| 53 | 50 52 | npcand | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) + T ) = d ) |
| 54 | 53 | eqcomd | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d = ( ( d - T ) + T ) ) |
| 55 | 54 | fveq2d | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( ( d - T ) + T ) ) ) |
| 56 | ovex | |- ( d - T ) e. _V |
|
| 57 | 48 | adantl | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. RR ) |
| 58 | 2 | adantr | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. RR ) |
| 59 | 57 58 | resubcld | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. RR ) |
| 60 | 59 | ex | |- ( ph -> ( d e. ( RR \ { ( x + T ) } ) -> ( d - T ) e. RR ) ) |
| 61 | 60 | imdistani | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ph /\ ( d - T ) e. RR ) ) |
| 62 | eleq1 | |- ( x = ( d - T ) -> ( x e. RR <-> ( d - T ) e. RR ) ) |
|
| 63 | 62 | anbi2d | |- ( x = ( d - T ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ ( d - T ) e. RR ) ) ) |
| 64 | fvoveq1 | |- ( x = ( d - T ) -> ( F ` ( x + T ) ) = ( F ` ( ( d - T ) + T ) ) ) |
|
| 65 | fveq2 | |- ( x = ( d - T ) -> ( F ` x ) = ( F ` ( d - T ) ) ) |
|
| 66 | 64 65 | eqeq12d | |- ( x = ( d - T ) -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) |
| 67 | 63 66 | imbi12d | |- ( x = ( d - T ) -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ ( d - T ) e. RR ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) ) |
| 68 | 67 3 | vtoclg | |- ( ( d - T ) e. _V -> ( ( ph /\ ( d - T ) e. RR ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) ) |
| 69 | 56 61 68 | mpsyl | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( ( d - T ) + T ) ) = ( F ` ( d - T ) ) ) |
| 70 | 55 69 | eqtrd | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( d - T ) ) ) |
| 71 | 70 | adantlr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` d ) = ( F ` ( d - T ) ) ) |
| 72 | simpll | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ph ) |
|
| 73 | 9 | ad2antlr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> x e. RR ) |
| 74 | 72 73 3 | syl2anc | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 75 | 71 74 | oveq12d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( F ` d ) - ( F ` ( x + T ) ) ) = ( ( F ` ( d - T ) ) - ( F ` x ) ) ) |
| 76 | 49 | adantl | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. CC ) |
| 77 | 72 51 | syl | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. CC ) |
| 78 | 10 | recnd | |- ( ( ph /\ x e. dom G ) -> x e. CC ) |
| 79 | 78 | adantr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> x e. CC ) |
| 80 | 76 77 79 | subsub4d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) = ( d - ( T + x ) ) ) |
| 81 | 77 79 | addcomd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( T + x ) = ( x + T ) ) |
| 82 | 81 | oveq2d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - ( T + x ) ) = ( d - ( x + T ) ) ) |
| 83 | 80 82 | eqtr2d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - ( x + T ) ) = ( ( d - T ) - x ) ) |
| 84 | 75 83 | oveq12d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` d ) - ( F ` ( x + T ) ) ) / ( d - ( x + T ) ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 85 | 47 84 | sylan9eqr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = d ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 86 | simpr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. ( RR \ { ( x + T ) } ) ) |
|
| 87 | 1 | adantr | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> F : RR --> CC ) |
| 88 | 87 59 | ffvelcdmd | |- ( ( ph /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( d - T ) ) e. CC ) |
| 89 | 88 | adantlr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` ( d - T ) ) e. CC ) |
| 90 | 39 10 | ffvelcdmd | |- ( ( ph /\ x e. dom G ) -> ( F ` x ) e. CC ) |
| 91 | 90 | adantr | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( F ` x ) e. CC ) |
| 92 | 89 91 | subcld | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( F ` ( d - T ) ) - ( F ` x ) ) e. CC ) |
| 93 | 76 77 | subcld | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. CC ) |
| 94 | 93 79 | subcld | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) e. CC ) |
| 95 | simpr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( d - T ) = x ) |
|
| 96 | 49 | ad2antlr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d e. CC ) |
| 97 | 77 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> T e. CC ) |
| 98 | 79 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> x e. CC ) |
| 99 | 96 97 98 | subadd2d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( ( d - T ) = x <-> ( x + T ) = d ) ) |
| 100 | 95 99 | mpbid | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> ( x + T ) = d ) |
| 101 | 100 | eqcomd | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d = ( x + T ) ) |
| 102 | eldifsni | |- ( d e. ( RR \ { ( x + T ) } ) -> d =/= ( x + T ) ) |
|
| 103 | 102 | ad2antlr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> d =/= ( x + T ) ) |
| 104 | 103 | neneqd | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d - T ) = x ) -> -. d = ( x + T ) ) |
| 105 | 101 104 | pm2.65da | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> -. ( d - T ) = x ) |
| 106 | 105 | neqned | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) =/= x ) |
| 107 | 93 79 106 | subne0d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) =/= 0 ) |
| 108 | 92 94 107 | divcld | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) e. CC ) |
| 109 | 43 85 86 108 | fvmptd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 110 | 109 | fvoveq1d | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) = ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) ) |
| 111 | 110 | ad4ant13 | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) = ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) ) |
| 112 | neeq1 | |- ( c = ( d - T ) -> ( c =/= x <-> ( d - T ) =/= x ) ) |
|
| 113 | fvoveq1 | |- ( c = ( d - T ) -> ( abs ` ( c - x ) ) = ( abs ` ( ( d - T ) - x ) ) ) |
|
| 114 | 113 | breq1d | |- ( c = ( d - T ) -> ( ( abs ` ( c - x ) ) < b <-> ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 115 | 112 114 | anbi12d | |- ( c = ( d - T ) -> ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) <-> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) ) |
| 116 | 115 | imbrov2fvoveq | |- ( c = ( d - T ) -> ( ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) ) |
| 117 | simpllr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
|
| 118 | 48 | ad2antlr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> d e. RR ) |
| 119 | 2 | ad4antr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> T e. RR ) |
| 120 | 118 119 | resubcld | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) e. RR ) |
| 121 | elsni | |- ( ( d - T ) e. { x } -> ( d - T ) = x ) |
|
| 122 | 105 121 | nsyl | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> -. ( d - T ) e. { x } ) |
| 123 | 122 | ad4ant13 | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> -. ( d - T ) e. { x } ) |
| 124 | 120 123 | eldifd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) e. ( RR \ { x } ) ) |
| 125 | 116 117 124 | rspcdva | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) |
| 126 | eqidd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
|
| 127 | simpr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> y = ( d - T ) ) |
|
| 128 | 127 | fveq2d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( F ` y ) = ( F ` ( d - T ) ) ) |
| 129 | 128 | oveq1d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` ( d - T ) ) - ( F ` x ) ) ) |
| 130 | 127 | oveq1d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( y - x ) = ( ( d - T ) - x ) ) |
| 131 | 129 130 | oveq12d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ y = ( d - T ) ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 132 | 48 | adantl | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> d e. RR ) |
| 133 | 72 2 | syl | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> T e. RR ) |
| 134 | 132 133 | resubcld | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. RR ) |
| 135 | 134 122 | eldifd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( d - T ) e. ( RR \ { x } ) ) |
| 136 | 126 131 135 108 | fvmptd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) = ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) ) |
| 137 | 136 | eqcomd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) = ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) ) |
| 138 | 137 | ad2antrr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) = ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) ) |
| 139 | 138 | fvoveq1d | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) = ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) ) |
| 140 | 106 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( d - T ) =/= x ) |
| 141 | 83 | eqcomd | |- ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d - T ) - x ) = ( d - ( x + T ) ) ) |
| 142 | 141 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( d - T ) - x ) = ( d - ( x + T ) ) ) |
| 143 | 142 | fveq2d | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( d - T ) - x ) ) = ( abs ` ( d - ( x + T ) ) ) ) |
| 144 | simpr | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( d - ( x + T ) ) ) < b ) |
|
| 145 | 143 144 | eqbrtrd | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( d - T ) - x ) ) < b ) |
| 146 | 140 145 | jca | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 147 | 146 | adantr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) ) |
| 148 | simpr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) |
|
| 149 | 147 148 | mpd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) |
| 150 | 139 149 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) /\ ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 151 | 150 | ex | |- ( ( ( ( ph /\ x e. dom G ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) ) |
| 152 | 151 | adantllr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( ( ( ( d - T ) =/= x /\ ( abs ` ( ( d - T ) - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` ( d - T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) ) |
| 153 | 125 152 | mpd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 154 | 153 | adantrl | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( ( F ` ( d - T ) ) - ( F ` x ) ) / ( ( d - T ) - x ) ) - w ) ) < a ) |
| 155 | 111 154 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) /\ ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) |
| 156 | 155 | ex | |- ( ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) /\ d e. ( RR \ { ( x + T ) } ) ) -> ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
| 157 | 156 | ralrimiva | |- ( ( ( ph /\ x e. dom G ) /\ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) -> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
| 158 | eqidd | |- ( c e. ( RR \ { x } ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) = ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
|
| 159 | fveq2 | |- ( y = c -> ( F ` y ) = ( F ` c ) ) |
|
| 160 | 159 | oveq1d | |- ( y = c -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` c ) - ( F ` x ) ) ) |
| 161 | oveq1 | |- ( y = c -> ( y - x ) = ( c - x ) ) |
|
| 162 | 160 161 | oveq12d | |- ( y = c -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 163 | 162 | adantl | |- ( ( c e. ( RR \ { x } ) /\ y = c ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 164 | id | |- ( c e. ( RR \ { x } ) -> c e. ( RR \ { x } ) ) |
|
| 165 | ovexd | |- ( c e. ( RR \ { x } ) -> ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) e. _V ) |
|
| 166 | 158 163 164 165 | fvmptd | |- ( c e. ( RR \ { x } ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) = ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) ) |
| 167 | 166 | fvoveq1d | |- ( c e. ( RR \ { x } ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) = ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) ) |
| 168 | 167 | ad2antlr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) = ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) ) |
| 169 | simpll | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ph ) |
|
| 170 | eldifi | |- ( c e. ( RR \ { x } ) -> c e. RR ) |
|
| 171 | 170 | adantl | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c e. RR ) |
| 172 | eleq1 | |- ( x = c -> ( x e. RR <-> c e. RR ) ) |
|
| 173 | 172 | anbi2d | |- ( x = c -> ( ( ph /\ x e. RR ) <-> ( ph /\ c e. RR ) ) ) |
| 174 | fvoveq1 | |- ( x = c -> ( F ` ( x + T ) ) = ( F ` ( c + T ) ) ) |
|
| 175 | fveq2 | |- ( x = c -> ( F ` x ) = ( F ` c ) ) |
|
| 176 | 174 175 | eqeq12d | |- ( x = c -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( c + T ) ) = ( F ` c ) ) ) |
| 177 | 173 176 | imbi12d | |- ( x = c -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ c e. RR ) -> ( F ` ( c + T ) ) = ( F ` c ) ) ) ) |
| 178 | 177 3 | chvarvv | |- ( ( ph /\ c e. RR ) -> ( F ` ( c + T ) ) = ( F ` c ) ) |
| 179 | 178 | eqcomd | |- ( ( ph /\ c e. RR ) -> ( F ` c ) = ( F ` ( c + T ) ) ) |
| 180 | 169 171 179 | syl2anc | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` c ) = ( F ` ( c + T ) ) ) |
| 181 | 9 | ad2antlr | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> x e. RR ) |
| 182 | 169 181 3 | syl2anc | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 183 | 182 | eqcomd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( F ` x ) = ( F ` ( x + T ) ) ) |
| 184 | 180 183 | oveq12d | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( F ` c ) - ( F ` x ) ) = ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) ) |
| 185 | 171 | recnd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c e. CC ) |
| 186 | 78 | adantr | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> x e. CC ) |
| 187 | 169 51 | syl | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> T e. CC ) |
| 188 | 185 186 187 | pnpcan2d | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( c + T ) - ( x + T ) ) = ( c - x ) ) |
| 189 | 188 | eqcomd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c - x ) = ( ( c + T ) - ( x + T ) ) ) |
| 190 | 184 189 | oveq12d | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 191 | 190 | fvoveq1d | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) = ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) ) |
| 192 | 191 | ad4ant13 | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) = ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) ) |
| 193 | neeq1 | |- ( d = ( c + T ) -> ( d =/= ( x + T ) <-> ( c + T ) =/= ( x + T ) ) ) |
|
| 194 | fvoveq1 | |- ( d = ( c + T ) -> ( abs ` ( d - ( x + T ) ) ) = ( abs ` ( ( c + T ) - ( x + T ) ) ) ) |
|
| 195 | 194 | breq1d | |- ( d = ( c + T ) -> ( ( abs ` ( d - ( x + T ) ) ) < b <-> ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 196 | 193 195 | anbi12d | |- ( d = ( c + T ) -> ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) <-> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) ) |
| 197 | 196 | imbrov2fvoveq | |- ( d = ( c + T ) -> ( ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) <-> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) ) |
| 198 | simpllr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) |
|
| 199 | 170 | ad2antlr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> c e. RR ) |
| 200 | 2 | ad4antr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> T e. RR ) |
| 201 | 199 200 | readdcld | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) e. RR ) |
| 202 | eldifsni | |- ( c e. ( RR \ { x } ) -> c =/= x ) |
|
| 203 | 202 | adantl | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> c =/= x ) |
| 204 | 185 186 187 203 | addneintr2d | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) =/= ( x + T ) ) |
| 205 | 204 | ad4ant13 | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) =/= ( x + T ) ) |
| 206 | nelsn | |- ( ( c + T ) =/= ( x + T ) -> -. ( c + T ) e. { ( x + T ) } ) |
|
| 207 | 205 206 | syl | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> -. ( c + T ) e. { ( x + T ) } ) |
| 208 | 201 207 | eldifd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) e. ( RR \ { ( x + T ) } ) ) |
| 209 | 197 198 208 | rspcdva | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) |
| 210 | eqidd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ) |
|
| 211 | fveq2 | |- ( y = ( c + T ) -> ( F ` y ) = ( F ` ( c + T ) ) ) |
|
| 212 | 211 | oveq1d | |- ( y = ( c + T ) -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) ) |
| 213 | oveq1 | |- ( y = ( c + T ) -> ( y - ( x + T ) ) = ( ( c + T ) - ( x + T ) ) ) |
|
| 214 | 212 213 | oveq12d | |- ( y = ( c + T ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 215 | 214 | adantl | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ y = ( c + T ) ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 216 | 169 2 | syl | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> T e. RR ) |
| 217 | 171 216 | readdcld | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) e. RR ) |
| 218 | 204 206 | syl | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> -. ( c + T ) e. { ( x + T ) } ) |
| 219 | 217 218 | eldifd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( c + T ) e. ( RR \ { ( x + T ) } ) ) |
| 220 | ovexd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) e. _V ) |
|
| 221 | 210 215 219 220 | fvmptd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) = ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) ) |
| 222 | 221 | eqcomd | |- ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) ) |
| 223 | 222 | ad2antrr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) ) |
| 224 | 223 | fvoveq1d | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) = ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) ) |
| 225 | 204 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( c + T ) =/= ( x + T ) ) |
| 226 | 170 | recnd | |- ( c e. ( RR \ { x } ) -> c e. CC ) |
| 227 | 226 | ad2antlr | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> c e. CC ) |
| 228 | 186 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> x e. CC ) |
| 229 | 187 | adantr | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> T e. CC ) |
| 230 | 227 228 229 | pnpcan2d | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( c + T ) - ( x + T ) ) = ( c - x ) ) |
| 231 | 230 | fveq2d | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( c + T ) - ( x + T ) ) ) = ( abs ` ( c - x ) ) ) |
| 232 | simpr | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( c - x ) ) < b ) |
|
| 233 | 231 232 | eqbrtrd | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) |
| 234 | 225 233 | jca | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 235 | 234 | adantr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) ) |
| 236 | simpr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) |
|
| 237 | 235 236 | mpd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) |
| 238 | 224 237 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) /\ ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) |
| 239 | 238 | ex | |- ( ( ( ( ph /\ x e. dom G ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) ) |
| 240 | 239 | adantllr | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( ( ( ( c + T ) =/= ( x + T ) /\ ( abs ` ( ( c + T ) - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` ( c + T ) ) - w ) ) < a ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) ) |
| 241 | 209 240 | mpd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` ( c + T ) ) - ( F ` ( x + T ) ) ) / ( ( c + T ) - ( x + T ) ) ) - w ) ) < a ) |
| 242 | 192 241 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) < a ) |
| 243 | 242 | adantrl | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( ( F ` c ) - ( F ` x ) ) / ( c - x ) ) - w ) ) < a ) |
| 244 | 168 243 | eqbrtrd | |- ( ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) /\ ( c =/= x /\ ( abs ` ( c - x ) ) < b ) ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) |
| 245 | 244 | ex | |- ( ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) /\ c e. ( RR \ { x } ) ) -> ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
| 246 | 245 | ralrimiva | |- ( ( ( ph /\ x e. dom G ) /\ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) -> A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) |
| 247 | 157 246 | impbida | |- ( ( ph /\ x e. dom G ) -> ( A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 248 | 247 | rexbidv | |- ( ( ph /\ x e. dom G ) -> ( E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 249 | 248 | ralbidv | |- ( ( ph /\ x e. dom G ) -> ( A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) <-> A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) |
| 250 | 249 | anbi2d | |- ( ( ph /\ x e. dom G ) -> ( ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) ) |
| 251 | 39 38 10 | dvlem | |- ( ( ( ph /\ x e. dom G ) /\ y e. ( RR \ { x } ) ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. CC ) |
| 252 | 251 | fmpttd | |- ( ( ph /\ x e. dom G ) -> ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) : ( RR \ { x } ) --> CC ) |
| 253 | 38 | ssdifssd | |- ( ( ph /\ x e. dom G ) -> ( RR \ { x } ) C_ CC ) |
| 254 | 252 253 78 | ellimc3 | |- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. c e. ( RR \ { x } ) ( ( c =/= x /\ ( abs ` ( c - x ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ` c ) - w ) ) < a ) ) ) ) |
| 255 | 39 38 12 | dvlem | |- ( ( ( ph /\ x e. dom G ) /\ y e. ( RR \ { ( x + T ) } ) ) -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) e. CC ) |
| 256 | 255 | fmpttd | |- ( ( ph /\ x e. dom G ) -> ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) : ( RR \ { ( x + T ) } ) --> CC ) |
| 257 | 38 | ssdifssd | |- ( ( ph /\ x e. dom G ) -> ( RR \ { ( x + T ) } ) C_ CC ) |
| 258 | 12 | recnd | |- ( ( ph /\ x e. dom G ) -> ( x + T ) e. CC ) |
| 259 | 256 257 258 | ellimc3 | |- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) <-> ( w e. CC /\ A. a e. RR+ E. b e. RR+ A. d e. ( RR \ { ( x + T ) } ) ( ( d =/= ( x + T ) /\ ( abs ` ( d - ( x + T ) ) ) < b ) -> ( abs ` ( ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) ` d ) - w ) ) < a ) ) ) ) |
| 260 | 250 254 259 | 3bitr4d | |- ( ( ph /\ x e. dom G ) -> ( w e. ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) <-> w e. ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) |
| 261 | 260 | eqrdv | |- ( ( ph /\ x e. dom G ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) = ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 262 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 263 | 262 | oveq1d | |- ( y = z -> ( ( F ` y ) - ( F ` ( x + T ) ) ) = ( ( F ` z ) - ( F ` ( x + T ) ) ) ) |
| 264 | oveq1 | |- ( y = z -> ( y - ( x + T ) ) = ( z - ( x + T ) ) ) |
|
| 265 | 263 264 | oveq12d | |- ( y = z -> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) = ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
| 266 | 265 | cbvmptv | |- ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) = ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
| 267 | 266 | oveq1i | |- ( ( y e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` y ) - ( F ` ( x + T ) ) ) / ( y - ( x + T ) ) ) ) limCC ( x + T ) ) = ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) |
| 268 | 261 267 | eqtrdi | |- ( ( ph /\ x e. dom G ) -> ( ( y e. ( RR \ { x } ) |-> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) limCC x ) = ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 269 | 42 268 | eleqtrd | |- ( ( ph /\ x e. dom G ) -> ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) |
| 270 | eqid | |- ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) = ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) |
|
| 271 | 37 | a1i | |- ( ph -> RR C_ CC ) |
| 272 | ssidd | |- ( ph -> RR C_ RR ) |
|
| 273 | 34 35 270 271 1 272 | eldv | |- ( ph -> ( ( x + T ) ( RR _D F ) ( G ` x ) <-> ( ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) ) |
| 274 | 273 | adantr | |- ( ( ph /\ x e. dom G ) -> ( ( x + T ) ( RR _D F ) ( G ` x ) <-> ( ( x + T ) e. ( ( int ` ( topGen ` ran (,) ) ) ` RR ) /\ ( G ` x ) e. ( ( z e. ( RR \ { ( x + T ) } ) |-> ( ( ( F ` z ) - ( F ` ( x + T ) ) ) / ( z - ( x + T ) ) ) ) limCC ( x + T ) ) ) ) ) |
| 275 | 21 269 274 | mpbir2and | |- ( ( ph /\ x e. dom G ) -> ( x + T ) ( RR _D F ) ( G ` x ) ) |
| 276 | 4 | a1i | |- ( ( ph /\ x e. dom G ) -> G = ( RR _D F ) ) |
| 277 | 276 | breqd | |- ( ( ph /\ x e. dom G ) -> ( ( x + T ) G ( G ` x ) <-> ( x + T ) ( RR _D F ) ( G ` x ) ) ) |
| 278 | 275 277 | mpbird | |- ( ( ph /\ x e. dom G ) -> ( x + T ) G ( G ` x ) ) |
| 279 | 4 | a1i | |- ( ph -> G = ( RR _D F ) ) |
| 280 | 279 | funeqd | |- ( ph -> ( Fun G <-> Fun ( RR _D F ) ) ) |
| 281 | 29 280 | mpbird | |- ( ph -> Fun G ) |
| 282 | 281 | adantr | |- ( ( ph /\ x e. dom G ) -> Fun G ) |
| 283 | funbrfv2b | |- ( Fun G -> ( ( x + T ) G ( G ` x ) <-> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) ) |
|
| 284 | 282 283 | syl | |- ( ( ph /\ x e. dom G ) -> ( ( x + T ) G ( G ` x ) <-> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) ) |
| 285 | 278 284 | mpbid | |- ( ( ph /\ x e. dom G ) -> ( ( x + T ) e. dom G /\ ( G ` ( x + T ) ) = ( G ` x ) ) ) |