This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funbrfv2b | |- ( Fun F -> ( A F B <-> ( A e. dom F /\ ( F ` A ) = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel | |- ( Fun F -> Rel F ) |
|
| 2 | releldm | |- ( ( Rel F /\ A F B ) -> A e. dom F ) |
|
| 3 | 2 | ex | |- ( Rel F -> ( A F B -> A e. dom F ) ) |
| 4 | 1 3 | syl | |- ( Fun F -> ( A F B -> A e. dom F ) ) |
| 5 | 4 | pm4.71rd | |- ( Fun F -> ( A F B <-> ( A e. dom F /\ A F B ) ) ) |
| 6 | funbrfvb | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ` A ) = B <-> A F B ) ) |
|
| 7 | 6 | pm5.32da | |- ( Fun F -> ( ( A e. dom F /\ ( F ` A ) = B ) <-> ( A e. dom F /\ A F B ) ) ) |
| 8 | 5 7 | bitr4d | |- ( Fun F -> ( A F B <-> ( A e. dom F /\ ( F ` A ) = B ) ) ) |