This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any one-to-one onto function determines an isomorphism with an induced relation S . (Contributed by Mario Carneiro, 9-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1oiso2.1 | |- S = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) } |
|
| Assertion | f1oiso2 | |- ( H : A -1-1-onto-> B -> H Isom R , S ( A , B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 | |- S = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) } |
|
| 2 | f1ocnvdm | |- ( ( H : A -1-1-onto-> B /\ x e. B ) -> ( `' H ` x ) e. A ) |
|
| 3 | 2 | adantrr | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( `' H ` x ) e. A ) |
| 4 | 3 | 3adant3 | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` x ) e. A ) |
| 5 | f1ocnvdm | |- ( ( H : A -1-1-onto-> B /\ y e. B ) -> ( `' H ` y ) e. A ) |
|
| 6 | 5 | adantrl | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( `' H ` y ) e. A ) |
| 7 | 6 | 3adant3 | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` y ) e. A ) |
| 8 | f1ocnvfv2 | |- ( ( H : A -1-1-onto-> B /\ x e. B ) -> ( H ` ( `' H ` x ) ) = x ) |
|
| 9 | 8 | eqcomd | |- ( ( H : A -1-1-onto-> B /\ x e. B ) -> x = ( H ` ( `' H ` x ) ) ) |
| 10 | f1ocnvfv2 | |- ( ( H : A -1-1-onto-> B /\ y e. B ) -> ( H ` ( `' H ` y ) ) = y ) |
|
| 11 | 10 | eqcomd | |- ( ( H : A -1-1-onto-> B /\ y e. B ) -> y = ( H ` ( `' H ` y ) ) ) |
| 12 | 9 11 | anim12dan | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) ) -> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) |
| 13 | 12 | 3adant3 | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) |
| 14 | simp3 | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> ( `' H ` x ) R ( `' H ` y ) ) |
|
| 15 | fveq2 | |- ( w = ( `' H ` y ) -> ( H ` w ) = ( H ` ( `' H ` y ) ) ) |
|
| 16 | 15 | eqeq2d | |- ( w = ( `' H ` y ) -> ( y = ( H ` w ) <-> y = ( H ` ( `' H ` y ) ) ) ) |
| 17 | 16 | anbi2d | |- ( w = ( `' H ` y ) -> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) <-> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) ) ) |
| 18 | breq2 | |- ( w = ( `' H ` y ) -> ( ( `' H ` x ) R w <-> ( `' H ` x ) R ( `' H ` y ) ) ) |
|
| 19 | 17 18 | anbi12d | |- ( w = ( `' H ` y ) -> ( ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) <-> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) |
| 20 | 19 | rspcev | |- ( ( ( `' H ` y ) e. A /\ ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` ( `' H ` y ) ) ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) -> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) |
| 21 | 7 13 14 20 | syl12anc | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) |
| 22 | fveq2 | |- ( z = ( `' H ` x ) -> ( H ` z ) = ( H ` ( `' H ` x ) ) ) |
|
| 23 | 22 | eqeq2d | |- ( z = ( `' H ` x ) -> ( x = ( H ` z ) <-> x = ( H ` ( `' H ` x ) ) ) ) |
| 24 | 23 | anbi1d | |- ( z = ( `' H ` x ) -> ( ( x = ( H ` z ) /\ y = ( H ` w ) ) <-> ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) ) ) |
| 25 | breq1 | |- ( z = ( `' H ` x ) -> ( z R w <-> ( `' H ` x ) R w ) ) |
|
| 26 | 24 25 | anbi12d | |- ( z = ( `' H ` x ) -> ( ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) <-> ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) ) |
| 27 | 26 | rexbidv | |- ( z = ( `' H ` x ) -> ( E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) <-> E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) ) |
| 28 | 27 | rspcev | |- ( ( ( `' H ` x ) e. A /\ E. w e. A ( ( x = ( H ` ( `' H ` x ) ) /\ y = ( H ` w ) ) /\ ( `' H ` x ) R w ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) |
| 29 | 4 21 28 | syl2anc | |- ( ( H : A -1-1-onto-> B /\ ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) |
| 30 | 29 | 3expib | |- ( H : A -1-1-onto-> B -> ( ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) -> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) ) |
| 31 | simp3ll | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> x = ( H ` z ) ) |
|
| 32 | simp1 | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> H : A -1-1-onto-> B ) |
|
| 33 | simp2l | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> z e. A ) |
|
| 34 | f1of | |- ( H : A -1-1-onto-> B -> H : A --> B ) |
|
| 35 | 34 | ffvelcdmda | |- ( ( H : A -1-1-onto-> B /\ z e. A ) -> ( H ` z ) e. B ) |
| 36 | 32 33 35 | syl2anc | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` z ) e. B ) |
| 37 | 31 36 | eqeltrd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> x e. B ) |
| 38 | simp3lr | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> y = ( H ` w ) ) |
|
| 39 | simp2r | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> w e. A ) |
|
| 40 | 34 | ffvelcdmda | |- ( ( H : A -1-1-onto-> B /\ w e. A ) -> ( H ` w ) e. B ) |
| 41 | 32 39 40 | syl2anc | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` w ) e. B ) |
| 42 | 38 41 | eqeltrd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> y e. B ) |
| 43 | simp3r | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> z R w ) |
|
| 44 | 31 | eqcomd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` z ) = x ) |
| 45 | f1ocnvfv | |- ( ( H : A -1-1-onto-> B /\ z e. A ) -> ( ( H ` z ) = x -> ( `' H ` x ) = z ) ) |
|
| 46 | 32 33 45 | syl2anc | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( H ` z ) = x -> ( `' H ` x ) = z ) ) |
| 47 | 44 46 | mpd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` x ) = z ) |
| 48 | 38 | eqcomd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( H ` w ) = y ) |
| 49 | f1ocnvfv | |- ( ( H : A -1-1-onto-> B /\ w e. A ) -> ( ( H ` w ) = y -> ( `' H ` y ) = w ) ) |
|
| 50 | 32 39 49 | syl2anc | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( H ` w ) = y -> ( `' H ` y ) = w ) ) |
| 51 | 48 50 | mpd | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` y ) = w ) |
| 52 | 43 47 51 | 3brtr4d | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( `' H ` x ) R ( `' H ` y ) ) |
| 53 | 37 42 52 | jca31 | |- ( ( H : A -1-1-onto-> B /\ ( z e. A /\ w e. A ) /\ ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) |
| 54 | 53 | 3exp | |- ( H : A -1-1-onto-> B -> ( ( z e. A /\ w e. A ) -> ( ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) ) |
| 55 | 54 | rexlimdvv | |- ( H : A -1-1-onto-> B -> ( E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) -> ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) ) ) |
| 56 | 30 55 | impbid | |- ( H : A -1-1-onto-> B -> ( ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) <-> E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) ) ) |
| 57 | 56 | opabbidv | |- ( H : A -1-1-onto-> B -> { <. x , y >. | ( ( x e. B /\ y e. B ) /\ ( `' H ` x ) R ( `' H ` y ) ) } = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) |
| 58 | 1 57 | eqtrid | |- ( H : A -1-1-onto-> B -> S = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) |
| 59 | f1oiso | |- ( ( H : A -1-1-onto-> B /\ S = { <. x , y >. | E. z e. A E. w e. A ( ( x = ( H ` z ) /\ y = ( H ` w ) ) /\ z R w ) } ) -> H Isom R , S ( A , B ) ) |
|
| 60 | 58 59 | mpdan | |- ( H : A -1-1-onto-> B -> H Isom R , S ( A , B ) ) |