This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak form of isowe that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isowe2 | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S We B -> R We A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> H Isom R , S ( A , B ) ) |
|
| 2 | imaeq2 | |- ( x = y -> ( H " x ) = ( H " y ) ) |
|
| 3 | 2 | eleq1d | |- ( x = y -> ( ( H " x ) e. _V <-> ( H " y ) e. _V ) ) |
| 4 | 3 | spvv | |- ( A. x ( H " x ) e. _V -> ( H " y ) e. _V ) |
| 5 | 4 | adantl | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( H " y ) e. _V ) |
| 6 | 1 5 | isofrlem | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S Fr B -> R Fr A ) ) |
| 7 | isosolem | |- ( H Isom R , S ( A , B ) -> ( S Or B -> R Or A ) ) |
|
| 8 | 7 | adantr | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S Or B -> R Or A ) ) |
| 9 | 6 8 | anim12d | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( ( S Fr B /\ S Or B ) -> ( R Fr A /\ R Or A ) ) ) |
| 10 | df-we | |- ( S We B <-> ( S Fr B /\ S Or B ) ) |
|
| 11 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) ) |
|
| 12 | 9 10 11 | 3imtr4g | |- ( ( H Isom R , S ( A , B ) /\ A. x ( H " x ) e. _V ) -> ( S We B -> R We A ) ) |