This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011) (Revised by Mario Carneiro, 7-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wexp.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| Assertion | wexp | |- ( ( R We A /\ S We B ) -> T We ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wexp.1 | |- T = { <. x , y >. | ( ( x e. ( A X. B ) /\ y e. ( A X. B ) ) /\ ( ( 1st ` x ) R ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) S ( 2nd ` y ) ) ) ) } |
|
| 2 | wefr | |- ( R We A -> R Fr A ) |
|
| 3 | wefr | |- ( S We B -> S Fr B ) |
|
| 4 | 1 | frxp | |- ( ( R Fr A /\ S Fr B ) -> T Fr ( A X. B ) ) |
| 5 | 2 3 4 | syl2an | |- ( ( R We A /\ S We B ) -> T Fr ( A X. B ) ) |
| 6 | weso | |- ( R We A -> R Or A ) |
|
| 7 | weso | |- ( S We B -> S Or B ) |
|
| 8 | 1 | soxp | |- ( ( R Or A /\ S Or B ) -> T Or ( A X. B ) ) |
| 9 | 6 7 8 | syl2an | |- ( ( R We A /\ S We B ) -> T Or ( A X. B ) ) |
| 10 | df-we | |- ( T We ( A X. B ) <-> ( T Fr ( A X. B ) /\ T Or ( A X. B ) ) ) |
|
| 11 | 5 9 10 | sylanbrc | |- ( ( R We A /\ S We B ) -> T We ( A X. B ) ) |