This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a VI-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin6 | |- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin6 | |- Fin6 = { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } |
|
| 2 | 1 | eleq2i | |- ( A e. Fin6 <-> A e. { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } ) |
| 3 | relsdom | |- Rel ~< |
|
| 4 | 3 | brrelex1i | |- ( A ~< 2o -> A e. _V ) |
| 5 | 3 | brrelex1i | |- ( A ~< ( A X. A ) -> A e. _V ) |
| 6 | 4 5 | jaoi | |- ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. _V ) |
| 7 | breq1 | |- ( x = A -> ( x ~< 2o <-> A ~< 2o ) ) |
|
| 8 | id | |- ( x = A -> x = A ) |
|
| 9 | 8 | sqxpeqd | |- ( x = A -> ( x X. x ) = ( A X. A ) ) |
| 10 | 8 9 | breq12d | |- ( x = A -> ( x ~< ( x X. x ) <-> A ~< ( A X. A ) ) ) |
| 11 | 7 10 | orbi12d | |- ( x = A -> ( ( x ~< 2o \/ x ~< ( x X. x ) ) <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) ) |
| 12 | 6 11 | elab3 | |- ( A e. { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 13 | 2 12 | bitri | |- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |