This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is VII-finite iff it is non-well-orderable or finite. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin7-2 | |- ( A e. V -> ( A e. Fin7 <-> ( A e. dom card -> A e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin7 | |- ( A e. Fin7 -> ( A e. Fin7 <-> -. E. x e. ( On \ _om ) A ~~ x ) ) |
|
| 2 | 1 | ibi | |- ( A e. Fin7 -> -. E. x e. ( On \ _om ) A ~~ x ) |
| 3 | isnum2 | |- ( A e. dom card <-> E. x e. On x ~~ A ) |
|
| 4 | ensym | |- ( x ~~ A -> A ~~ x ) |
|
| 5 | simprl | |- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> x e. On ) |
|
| 6 | enfi | |- ( A ~~ x -> ( A e. Fin <-> x e. Fin ) ) |
|
| 7 | onfin | |- ( x e. On -> ( x e. Fin <-> x e. _om ) ) |
|
| 8 | 6 7 | sylan9bbr | |- ( ( x e. On /\ A ~~ x ) -> ( A e. Fin <-> x e. _om ) ) |
| 9 | 8 | biimprd | |- ( ( x e. On /\ A ~~ x ) -> ( x e. _om -> A e. Fin ) ) |
| 10 | 9 | con3d | |- ( ( x e. On /\ A ~~ x ) -> ( -. A e. Fin -> -. x e. _om ) ) |
| 11 | 10 | impcom | |- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> -. x e. _om ) |
| 12 | 5 11 | eldifd | |- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> x e. ( On \ _om ) ) |
| 13 | simprr | |- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> A ~~ x ) |
|
| 14 | 12 13 | jca | |- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) |
| 15 | 4 14 | sylanr2 | |- ( ( -. A e. Fin /\ ( x e. On /\ x ~~ A ) ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) |
| 16 | 15 | ex | |- ( -. A e. Fin -> ( ( x e. On /\ x ~~ A ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) ) |
| 17 | 16 | reximdv2 | |- ( -. A e. Fin -> ( E. x e. On x ~~ A -> E. x e. ( On \ _om ) A ~~ x ) ) |
| 18 | 17 | com12 | |- ( E. x e. On x ~~ A -> ( -. A e. Fin -> E. x e. ( On \ _om ) A ~~ x ) ) |
| 19 | 3 18 | sylbi | |- ( A e. dom card -> ( -. A e. Fin -> E. x e. ( On \ _om ) A ~~ x ) ) |
| 20 | 19 | con1d | |- ( A e. dom card -> ( -. E. x e. ( On \ _om ) A ~~ x -> A e. Fin ) ) |
| 21 | 2 20 | syl5com | |- ( A e. Fin7 -> ( A e. dom card -> A e. Fin ) ) |
| 22 | eldifi | |- ( x e. ( On \ _om ) -> x e. On ) |
|
| 23 | ensym | |- ( A ~~ x -> x ~~ A ) |
|
| 24 | isnumi | |- ( ( x e. On /\ x ~~ A ) -> A e. dom card ) |
|
| 25 | 22 23 24 | syl2an | |- ( ( x e. ( On \ _om ) /\ A ~~ x ) -> A e. dom card ) |
| 26 | 25 | rexlimiva | |- ( E. x e. ( On \ _om ) A ~~ x -> A e. dom card ) |
| 27 | 26 | con3i | |- ( -. A e. dom card -> -. E. x e. ( On \ _om ) A ~~ x ) |
| 28 | isfin7 | |- ( A e. V -> ( A e. Fin7 <-> -. E. x e. ( On \ _om ) A ~~ x ) ) |
|
| 29 | 27 28 | imbitrrid | |- ( A e. V -> ( -. A e. dom card -> A e. Fin7 ) ) |
| 30 | fin17 | |- ( A e. Fin -> A e. Fin7 ) |
|
| 31 | 30 | a1i | |- ( A e. V -> ( A e. Fin -> A e. Fin7 ) ) |
| 32 | 29 31 | jad | |- ( A e. V -> ( ( A e. dom card -> A e. Fin ) -> A e. Fin7 ) ) |
| 33 | 21 32 | impbid2 | |- ( A e. V -> ( A e. Fin7 <-> ( A e. dom card -> A e. Fin ) ) ) |