This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin17 | |- ( A e. Fin -> A e. Fin7 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | |- ( b e. ( On \ _om ) <-> ( b e. On /\ -. b e. _om ) ) |
|
| 2 | enfi | |- ( A ~~ b -> ( A e. Fin <-> b e. Fin ) ) |
|
| 3 | onfin | |- ( b e. On -> ( b e. Fin <-> b e. _om ) ) |
|
| 4 | 2 3 | sylan9bbr | |- ( ( b e. On /\ A ~~ b ) -> ( A e. Fin <-> b e. _om ) ) |
| 5 | 4 | biimpd | |- ( ( b e. On /\ A ~~ b ) -> ( A e. Fin -> b e. _om ) ) |
| 6 | 5 | con3d | |- ( ( b e. On /\ A ~~ b ) -> ( -. b e. _om -> -. A e. Fin ) ) |
| 7 | 6 | impancom | |- ( ( b e. On /\ -. b e. _om ) -> ( A ~~ b -> -. A e. Fin ) ) |
| 8 | 1 7 | sylbi | |- ( b e. ( On \ _om ) -> ( A ~~ b -> -. A e. Fin ) ) |
| 9 | 8 | rexlimiv | |- ( E. b e. ( On \ _om ) A ~~ b -> -. A e. Fin ) |
| 10 | 9 | con2i | |- ( A e. Fin -> -. E. b e. ( On \ _om ) A ~~ b ) |
| 11 | isfin7 | |- ( A e. Fin -> ( A e. Fin7 <-> -. E. b e. ( On \ _om ) A ~~ b ) ) |
|
| 12 | 10 11 | mpbird | |- ( A e. Fin -> A e. Fin7 ) |