This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
||
| fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
||
| fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
||
| fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
||
| Assertion | fin23lem29 | |- U. ran Z C_ U. ran t |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | fin23lem.b | |- P = { v e. _om | |^| ran U C_ ( t ` v ) } |
|
| 4 | fin23lem.c | |- Q = ( w e. _om |-> ( iota_ x e. P ( x i^i P ) ~~ w ) ) |
|
| 5 | fin23lem.d | |- R = ( w e. _om |-> ( iota_ x e. ( _om \ P ) ( x i^i ( _om \ P ) ) ~~ w ) ) |
|
| 6 | fin23lem.e | |- Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 7 | eqif | |- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) <-> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
|
| 8 | 7 | biimpi | |- ( Z = if ( P e. Fin , ( t o. R ) , ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) ) |
| 9 | rneq | |- ( Z = ( t o. R ) -> ran Z = ran ( t o. R ) ) |
|
| 10 | 9 | unieqd | |- ( Z = ( t o. R ) -> U. ran Z = U. ran ( t o. R ) ) |
| 11 | rncoss | |- ran ( t o. R ) C_ ran t |
|
| 12 | 11 | unissi | |- U. ran ( t o. R ) C_ U. ran t |
| 13 | 10 12 | eqsstrdi | |- ( Z = ( t o. R ) -> U. ran Z C_ U. ran t ) |
| 14 | 13 | adantl | |- ( ( P e. Fin /\ Z = ( t o. R ) ) -> U. ran Z C_ U. ran t ) |
| 15 | rneq | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> ran Z = ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
|
| 16 | 15 | unieqd | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z = U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) |
| 17 | rncoss | |- ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
|
| 18 | 17 | unissi | |- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
| 19 | unissb | |- ( U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) C_ U. ran t <-> A. a e. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) a C_ U. ran t ) |
|
| 20 | abid | |- ( a e. { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } <-> E. z e. P a = ( ( t ` z ) \ |^| ran U ) ) |
|
| 21 | fvssunirn | |- ( t ` z ) C_ U. ran t |
|
| 22 | 21 | a1i | |- ( z e. P -> ( t ` z ) C_ U. ran t ) |
| 23 | 22 | ssdifssd | |- ( z e. P -> ( ( t ` z ) \ |^| ran U ) C_ U. ran t ) |
| 24 | sseq1 | |- ( a = ( ( t ` z ) \ |^| ran U ) -> ( a C_ U. ran t <-> ( ( t ` z ) \ |^| ran U ) C_ U. ran t ) ) |
|
| 25 | 23 24 | syl5ibrcom | |- ( z e. P -> ( a = ( ( t ` z ) \ |^| ran U ) -> a C_ U. ran t ) ) |
| 26 | 25 | rexlimiv | |- ( E. z e. P a = ( ( t ` z ) \ |^| ran U ) -> a C_ U. ran t ) |
| 27 | 20 26 | sylbi | |- ( a e. { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } -> a C_ U. ran t ) |
| 28 | eqid | |- ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) |
|
| 29 | 28 | rnmpt | |- ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) = { a | E. z e. P a = ( ( t ` z ) \ |^| ran U ) } |
| 30 | 27 29 | eleq2s | |- ( a e. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) -> a C_ U. ran t ) |
| 31 | 19 30 | mprgbir | |- U. ran ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) C_ U. ran t |
| 32 | 18 31 | sstri | |- U. ran ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) C_ U. ran t |
| 33 | 16 32 | eqsstrdi | |- ( Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) -> U. ran Z C_ U. ran t ) |
| 34 | 33 | adantl | |- ( ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) -> U. ran Z C_ U. ran t ) |
| 35 | 14 34 | jaoi | |- ( ( ( P e. Fin /\ Z = ( t o. R ) ) \/ ( -. P e. Fin /\ Z = ( ( z e. P |-> ( ( t ` z ) \ |^| ran U ) ) o. Q ) ) ) -> U. ran Z C_ U. ran t ) |
| 36 | 6 8 35 | mp2b | |- U. ran Z C_ U. ran t |