This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . U ranges over the original set; in particular ran U is a set, although we do not assume here that U is. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem16 | |- U. ran U = U. ran t |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | unissb | |- ( U. ran U C_ U. ran t <-> A. a e. ran U a C_ U. ran t ) |
|
| 3 | 1 | fnseqom | |- U Fn _om |
| 4 | fvelrnb | |- ( U Fn _om -> ( a e. ran U <-> E. b e. _om ( U ` b ) = a ) ) |
|
| 5 | 3 4 | ax-mp | |- ( a e. ran U <-> E. b e. _om ( U ` b ) = a ) |
| 6 | peano1 | |- (/) e. _om |
|
| 7 | 0ss | |- (/) C_ b |
|
| 8 | 1 | fin23lem15 | |- ( ( ( b e. _om /\ (/) e. _om ) /\ (/) C_ b ) -> ( U ` b ) C_ ( U ` (/) ) ) |
| 9 | 7 8 | mpan2 | |- ( ( b e. _om /\ (/) e. _om ) -> ( U ` b ) C_ ( U ` (/) ) ) |
| 10 | 6 9 | mpan2 | |- ( b e. _om -> ( U ` b ) C_ ( U ` (/) ) ) |
| 11 | vex | |- t e. _V |
|
| 12 | 11 | rnex | |- ran t e. _V |
| 13 | 12 | uniex | |- U. ran t e. _V |
| 14 | 1 | seqom0g | |- ( U. ran t e. _V -> ( U ` (/) ) = U. ran t ) |
| 15 | 13 14 | ax-mp | |- ( U ` (/) ) = U. ran t |
| 16 | 10 15 | sseqtrdi | |- ( b e. _om -> ( U ` b ) C_ U. ran t ) |
| 17 | sseq1 | |- ( ( U ` b ) = a -> ( ( U ` b ) C_ U. ran t <-> a C_ U. ran t ) ) |
|
| 18 | 16 17 | syl5ibcom | |- ( b e. _om -> ( ( U ` b ) = a -> a C_ U. ran t ) ) |
| 19 | 18 | rexlimiv | |- ( E. b e. _om ( U ` b ) = a -> a C_ U. ran t ) |
| 20 | 5 19 | sylbi | |- ( a e. ran U -> a C_ U. ran t ) |
| 21 | 2 20 | mprgbir | |- U. ran U C_ U. ran t |
| 22 | fnfvelrn | |- ( ( U Fn _om /\ (/) e. _om ) -> ( U ` (/) ) e. ran U ) |
|
| 23 | 3 6 22 | mp2an | |- ( U ` (/) ) e. ran U |
| 24 | 15 23 | eqeltrri | |- U. ran t e. ran U |
| 25 | elssuni | |- ( U. ran t e. ran U -> U. ran t C_ U. ran U ) |
|
| 26 | 24 25 | ax-mp | |- U. ran t C_ U. ran U |
| 27 | 21 26 | eqssi | |- U. ran U = U. ran t |