This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a III-finite set is III-finite. (Contributed by Stefan O'Rear, 4-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isfin3ds.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) } |
|
| Assertion | ssfin3ds | |- ( ( A e. F /\ B C_ A ) -> B e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin3ds.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) } |
|
| 2 | pwexg | |- ( A e. F -> ~P A e. _V ) |
|
| 3 | simpr | |- ( ( A e. F /\ B C_ A ) -> B C_ A ) |
|
| 4 | 3 | sspwd | |- ( ( A e. F /\ B C_ A ) -> ~P B C_ ~P A ) |
| 5 | mapss | |- ( ( ~P A e. _V /\ ~P B C_ ~P A ) -> ( ~P B ^m _om ) C_ ( ~P A ^m _om ) ) |
|
| 6 | 2 4 5 | syl2an2r | |- ( ( A e. F /\ B C_ A ) -> ( ~P B ^m _om ) C_ ( ~P A ^m _om ) ) |
| 7 | 1 | isfin3ds | |- ( A e. F -> ( A e. F <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 8 | 7 | ibi | |- ( A e. F -> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) |
| 9 | 8 | adantr | |- ( ( A e. F /\ B C_ A ) -> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) |
| 10 | ssralv | |- ( ( ~P B ^m _om ) C_ ( ~P A ^m _om ) -> ( A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) -> A. f e. ( ~P B ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
|
| 11 | 6 9 10 | sylc | |- ( ( A e. F /\ B C_ A ) -> A. f e. ( ~P B ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) |
| 12 | ssexg | |- ( ( B C_ A /\ A e. F ) -> B e. _V ) |
|
| 13 | 12 | ancoms | |- ( ( A e. F /\ B C_ A ) -> B e. _V ) |
| 14 | 1 | isfin3ds | |- ( B e. _V -> ( B e. F <-> A. f e. ( ~P B ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 15 | 13 14 | syl | |- ( ( A e. F /\ B C_ A ) -> ( B e. F <-> A. f e. ( ~P B ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) ) |
| 16 | 11 15 | mpbird | |- ( ( A e. F /\ B C_ A ) -> B e. F ) |