This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015) (Proof shortened by AV, 4-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| f1ghm0to0.b | |- B = ( Base ` S ) |
||
| f1ghm0to0.n | |- N = ( 0g ` R ) |
||
| f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
||
| Assertion | ghmf1 | |- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | |- A = ( Base ` R ) |
|
| 2 | f1ghm0to0.b | |- B = ( Base ` S ) |
|
| 3 | f1ghm0to0.n | |- N = ( 0g ` R ) |
|
| 4 | f1ghm0to0.0 | |- .0. = ( 0g ` S ) |
|
| 5 | 1 2 3 4 | f1ghm0to0 | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 6 | 5 | 3expa | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 7 | 6 | biimpd | |- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 8 | 7 | ralrimiva | |- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) |
| 9 | 1 2 | ghmf | |- ( F e. ( R GrpHom S ) -> F : A --> B ) |
| 10 | 9 | adantr | |- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A --> B ) |
| 11 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 12 | eqid | |- ( -g ` S ) = ( -g ` S ) |
|
| 13 | 1 11 12 | ghmsub | |- ( ( F e. ( R GrpHom S ) /\ y e. A /\ z e. A ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 14 | 13 | 3expb | |- ( ( F e. ( R GrpHom S ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 15 | 14 | adantlr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` ( y ( -g ` R ) z ) ) = ( ( F ` y ) ( -g ` S ) ( F ` z ) ) ) |
| 16 | 15 | eqeq1d | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. <-> ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. ) ) |
| 17 | fveqeq2 | |- ( x = ( y ( -g ` R ) z ) -> ( ( F ` x ) = .0. <-> ( F ` ( y ( -g ` R ) z ) ) = .0. ) ) |
|
| 18 | eqeq1 | |- ( x = ( y ( -g ` R ) z ) -> ( x = N <-> ( y ( -g ` R ) z ) = N ) ) |
|
| 19 | 17 18 | imbi12d | |- ( x = ( y ( -g ` R ) z ) -> ( ( ( F ` x ) = .0. -> x = N ) <-> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) ) |
| 20 | simplr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) |
|
| 21 | ghmgrp1 | |- ( F e. ( R GrpHom S ) -> R e. Grp ) |
|
| 22 | 21 | adantr | |- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> R e. Grp ) |
| 23 | 1 11 | grpsubcl | |- ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( y ( -g ` R ) z ) e. A ) |
| 24 | 23 | 3expb | |- ( ( R e. Grp /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) |
| 25 | 22 24 | sylan | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( y ( -g ` R ) z ) e. A ) |
| 26 | 19 20 25 | rspcdva | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` ( y ( -g ` R ) z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) |
| 27 | 16 26 | sylbird | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. -> ( y ( -g ` R ) z ) = N ) ) |
| 28 | ghmgrp2 | |- ( F e. ( R GrpHom S ) -> S e. Grp ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> S e. Grp ) |
| 30 | 9 | ad2antrr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> F : A --> B ) |
| 31 | simprl | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> y e. A ) |
|
| 32 | 30 31 | ffvelcdmd | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` y ) e. B ) |
| 33 | simprr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> z e. A ) |
|
| 34 | 30 33 | ffvelcdmd | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( F ` z ) e. B ) |
| 35 | 2 4 12 | grpsubeq0 | |- ( ( S e. Grp /\ ( F ` y ) e. B /\ ( F ` z ) e. B ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) |
| 36 | 29 32 34 35 | syl3anc | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( ( F ` y ) ( -g ` S ) ( F ` z ) ) = .0. <-> ( F ` y ) = ( F ` z ) ) ) |
| 37 | 21 | ad2antrr | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> R e. Grp ) |
| 38 | 1 3 11 | grpsubeq0 | |- ( ( R e. Grp /\ y e. A /\ z e. A ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) |
| 39 | 37 31 33 38 | syl3anc | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( y ( -g ` R ) z ) = N <-> y = z ) ) |
| 40 | 27 36 39 | 3imtr3d | |- ( ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) /\ ( y e. A /\ z e. A ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 41 | 40 | ralrimivva | |- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 42 | dff13 | |- ( F : A -1-1-> B <-> ( F : A --> B /\ A. y e. A A. z e. A ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
|
| 43 | 10 41 42 | sylanbrc | |- ( ( F e. ( R GrpHom S ) /\ A. x e. A ( ( F ` x ) = .0. -> x = N ) ) -> F : A -1-1-> B ) |
| 44 | 8 43 | impbida | |- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> A. x e. A ( ( F ` x ) = .0. -> x = N ) ) ) |