This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a product is zero iff it has a zero factor. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domneq0.b | |- B = ( Base ` R ) |
|
| domneq0.t | |- .x. = ( .r ` R ) |
||
| domneq0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | domneq0 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domneq0.b | |- B = ( Base ` R ) |
|
| 2 | domneq0.t | |- .x. = ( .r ` R ) |
|
| 3 | domneq0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 3simpc | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X e. B /\ Y e. B ) ) |
|
| 5 | 1 2 3 | isdomn | |- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 6 | 5 | simprbi | |- ( R e. Domn -> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) |
| 8 | oveq1 | |- ( x = X -> ( x .x. y ) = ( X .x. y ) ) |
|
| 9 | 8 | eqeq1d | |- ( x = X -> ( ( x .x. y ) = .0. <-> ( X .x. y ) = .0. ) ) |
| 10 | eqeq1 | |- ( x = X -> ( x = .0. <-> X = .0. ) ) |
|
| 11 | 10 | orbi1d | |- ( x = X -> ( ( x = .0. \/ y = .0. ) <-> ( X = .0. \/ y = .0. ) ) ) |
| 12 | 9 11 | imbi12d | |- ( x = X -> ( ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( ( X .x. y ) = .0. -> ( X = .0. \/ y = .0. ) ) ) ) |
| 13 | oveq2 | |- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
|
| 14 | 13 | eqeq1d | |- ( y = Y -> ( ( X .x. y ) = .0. <-> ( X .x. Y ) = .0. ) ) |
| 15 | eqeq1 | |- ( y = Y -> ( y = .0. <-> Y = .0. ) ) |
|
| 16 | 15 | orbi2d | |- ( y = Y -> ( ( X = .0. \/ y = .0. ) <-> ( X = .0. \/ Y = .0. ) ) ) |
| 17 | 14 16 | imbi12d | |- ( y = Y -> ( ( ( X .x. y ) = .0. -> ( X = .0. \/ y = .0. ) ) <-> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) ) |
| 18 | 12 17 | rspc2va | |- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( x .x. y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
| 19 | 4 7 18 | syl2anc | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> ( X = .0. \/ Y = .0. ) ) ) |
| 20 | domnring | |- ( R e. Domn -> R e. Ring ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> R e. Ring ) |
| 22 | simp3 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 23 | 1 2 3 | ringlz | |- ( ( R e. Ring /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
| 24 | 21 22 23 | syl2anc | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( .0. .x. Y ) = .0. ) |
| 25 | oveq1 | |- ( X = .0. -> ( X .x. Y ) = ( .0. .x. Y ) ) |
|
| 26 | 25 | eqeq1d | |- ( X = .0. -> ( ( X .x. Y ) = .0. <-> ( .0. .x. Y ) = .0. ) ) |
| 27 | 24 26 | syl5ibrcom | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X = .0. -> ( X .x. Y ) = .0. ) ) |
| 28 | simp2 | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 29 | 1 2 3 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 30 | 21 28 29 | syl2anc | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( X .x. .0. ) = .0. ) |
| 31 | oveq2 | |- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
|
| 32 | 31 | eqeq1d | |- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
| 33 | 30 32 | syl5ibrcom | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 34 | 27 33 | jaod | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X = .0. \/ Y = .0. ) -> ( X .x. Y ) = .0. ) ) |
| 35 | 19 34 | impbid | |- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |