This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringlghm.b | |- B = ( Base ` R ) |
|
| ringlghm.t | |- .x. = ( .r ` R ) |
||
| Assertion | ringrghm | |- ( ( R e. Ring /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) e. ( R GrpHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b | |- B = ( Base ` R ) |
|
| 2 | ringlghm.t | |- .x. = ( .r ` R ) |
|
| 3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 4 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 5 | 4 | adantr | |- ( ( R e. Ring /\ X e. B ) -> R e. Grp ) |
| 6 | 1 2 | ringcl | |- ( ( R e. Ring /\ x e. B /\ X e. B ) -> ( x .x. X ) e. B ) |
| 7 | 6 | 3expa | |- ( ( ( R e. Ring /\ x e. B ) /\ X e. B ) -> ( x .x. X ) e. B ) |
| 8 | 7 | an32s | |- ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( x .x. X ) e. B ) |
| 9 | 8 | fmpttd | |- ( ( R e. Ring /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) : B --> B ) |
| 10 | df-3an | |- ( ( y e. B /\ z e. B /\ X e. B ) <-> ( ( y e. B /\ z e. B ) /\ X e. B ) ) |
|
| 11 | 1 3 2 | ringdir | |- ( ( R e. Ring /\ ( y e. B /\ z e. B /\ X e. B ) ) -> ( ( y ( +g ` R ) z ) .x. X ) = ( ( y .x. X ) ( +g ` R ) ( z .x. X ) ) ) |
| 12 | 10 11 | sylan2br | |- ( ( R e. Ring /\ ( ( y e. B /\ z e. B ) /\ X e. B ) ) -> ( ( y ( +g ` R ) z ) .x. X ) = ( ( y .x. X ) ( +g ` R ) ( z .x. X ) ) ) |
| 13 | 12 | anass1rs | |- ( ( ( R e. Ring /\ X e. B ) /\ ( y e. B /\ z e. B ) ) -> ( ( y ( +g ` R ) z ) .x. X ) = ( ( y .x. X ) ( +g ` R ) ( z .x. X ) ) ) |
| 14 | 1 3 | ringacl | |- ( ( R e. Ring /\ y e. B /\ z e. B ) -> ( y ( +g ` R ) z ) e. B ) |
| 15 | 14 | 3expb | |- ( ( R e. Ring /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` R ) z ) e. B ) |
| 16 | 15 | adantlr | |- ( ( ( R e. Ring /\ X e. B ) /\ ( y e. B /\ z e. B ) ) -> ( y ( +g ` R ) z ) e. B ) |
| 17 | oveq1 | |- ( x = ( y ( +g ` R ) z ) -> ( x .x. X ) = ( ( y ( +g ` R ) z ) .x. X ) ) |
|
| 18 | eqid | |- ( x e. B |-> ( x .x. X ) ) = ( x e. B |-> ( x .x. X ) ) |
|
| 19 | ovex | |- ( ( y ( +g ` R ) z ) .x. X ) e. _V |
|
| 20 | 17 18 19 | fvmpt | |- ( ( y ( +g ` R ) z ) e. B -> ( ( x e. B |-> ( x .x. X ) ) ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .x. X ) ) |
| 21 | 16 20 | syl | |- ( ( ( R e. Ring /\ X e. B ) /\ ( y e. B /\ z e. B ) ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( y ( +g ` R ) z ) ) = ( ( y ( +g ` R ) z ) .x. X ) ) |
| 22 | oveq1 | |- ( x = y -> ( x .x. X ) = ( y .x. X ) ) |
|
| 23 | ovex | |- ( y .x. X ) e. _V |
|
| 24 | 22 18 23 | fvmpt | |- ( y e. B -> ( ( x e. B |-> ( x .x. X ) ) ` y ) = ( y .x. X ) ) |
| 25 | oveq1 | |- ( x = z -> ( x .x. X ) = ( z .x. X ) ) |
|
| 26 | ovex | |- ( z .x. X ) e. _V |
|
| 27 | 25 18 26 | fvmpt | |- ( z e. B -> ( ( x e. B |-> ( x .x. X ) ) ` z ) = ( z .x. X ) ) |
| 28 | 24 27 | oveqan12d | |- ( ( y e. B /\ z e. B ) -> ( ( ( x e. B |-> ( x .x. X ) ) ` y ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` z ) ) = ( ( y .x. X ) ( +g ` R ) ( z .x. X ) ) ) |
| 29 | 28 | adantl | |- ( ( ( R e. Ring /\ X e. B ) /\ ( y e. B /\ z e. B ) ) -> ( ( ( x e. B |-> ( x .x. X ) ) ` y ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` z ) ) = ( ( y .x. X ) ( +g ` R ) ( z .x. X ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | |- ( ( ( R e. Ring /\ X e. B ) /\ ( y e. B /\ z e. B ) ) -> ( ( x e. B |-> ( x .x. X ) ) ` ( y ( +g ` R ) z ) ) = ( ( ( x e. B |-> ( x .x. X ) ) ` y ) ( +g ` R ) ( ( x e. B |-> ( x .x. X ) ) ` z ) ) ) |
| 31 | 1 1 3 3 5 5 9 30 | isghmd | |- ( ( R e. Ring /\ X e. B ) -> ( x e. B |-> ( x .x. X ) ) e. ( R GrpHom R ) ) |