This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl ). (Contributed by Mario Carneiro, 28-Feb-2014) (Revised by AV, 19-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmodexp | |- ( ( N e. NN /\ B e. NN /\ N || A ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | |- ( N || A -> ( N e. ZZ /\ A e. ZZ ) ) |
|
| 2 | dvdsmod0 | |- ( ( N e. NN /\ N || A ) -> ( A mod N ) = 0 ) |
|
| 3 | 2 | 3ad2antl2 | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ N || A ) -> ( A mod N ) = 0 ) |
| 4 | 3 | ex | |- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( A mod N ) = 0 ) ) |
| 5 | simpl3 | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN ) |
|
| 6 | 5 | 0expd | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 ^ B ) = 0 ) |
| 7 | 6 | oveq1d | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( 0 ^ B ) mod N ) = ( 0 mod N ) ) |
| 8 | simpl1 | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> A e. ZZ ) |
|
| 9 | 0zd | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> 0 e. ZZ ) |
|
| 10 | nnnn0 | |- ( B e. NN -> B e. NN0 ) |
|
| 11 | 10 | 3ad2ant3 | |- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> B e. NN0 ) |
| 12 | 11 | adantr | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN0 ) |
| 13 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> N e. RR+ ) |
| 15 | 14 | adantr | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> N e. RR+ ) |
| 16 | simpr | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = 0 ) |
|
| 17 | 0mod | |- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
|
| 18 | 15 17 | syl | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 mod N ) = 0 ) |
| 19 | 16 18 | eqtr4d | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = ( 0 mod N ) ) |
| 20 | modexp | |- ( ( ( A e. ZZ /\ 0 e. ZZ ) /\ ( B e. NN0 /\ N e. RR+ ) /\ ( A mod N ) = ( 0 mod N ) ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) |
|
| 21 | 8 9 12 15 19 20 | syl221anc | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) |
| 22 | 7 21 19 | 3eqtr4d | |- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |
| 23 | 22 | ex | |- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( ( A mod N ) = 0 -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) |
| 24 | 4 23 | syld | |- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) |
| 25 | 24 | 3exp | |- ( A e. ZZ -> ( N e. NN -> ( B e. NN -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 26 | 25 | com24 | |- ( A e. ZZ -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 27 | 26 | adantl | |- ( ( N e. ZZ /\ A e. ZZ ) -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 28 | 1 27 | mpcom | |- ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) |
| 29 | 28 | 3imp31 | |- ( ( N e. NN /\ B e. NN /\ N || A ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |