This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative definition of the integers, based on elz2 . (Contributed by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfz2 | |- ZZ = ( - " ( NN X. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz2 | |- ( x e. ZZ <-> E. y e. NN E. z e. NN x = ( y - z ) ) |
|
| 2 | subf | |- - : ( CC X. CC ) --> CC |
|
| 3 | ffn | |- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
|
| 4 | 2 3 | ax-mp | |- - Fn ( CC X. CC ) |
| 5 | nnsscn | |- NN C_ CC |
|
| 6 | xpss12 | |- ( ( NN C_ CC /\ NN C_ CC ) -> ( NN X. NN ) C_ ( CC X. CC ) ) |
|
| 7 | 5 5 6 | mp2an | |- ( NN X. NN ) C_ ( CC X. CC ) |
| 8 | ovelimab | |- ( ( - Fn ( CC X. CC ) /\ ( NN X. NN ) C_ ( CC X. CC ) ) -> ( x e. ( - " ( NN X. NN ) ) <-> E. y e. NN E. z e. NN x = ( y - z ) ) ) |
|
| 9 | 4 7 8 | mp2an | |- ( x e. ( - " ( NN X. NN ) ) <-> E. y e. NN E. z e. NN x = ( y - z ) ) |
| 10 | 1 9 | bitr4i | |- ( x e. ZZ <-> x e. ( - " ( NN X. NN ) ) ) |
| 11 | 10 | eqriv | |- ZZ = ( - " ( NN X. NN ) ) |