This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number is a submonoid of the multiplicative group of CCfld . (Contributed by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efabl.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| efabl.2 | |- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
||
| efabl.3 | |- ( ph -> A e. CC ) |
||
| efabl.4 | |- ( ph -> X e. ( SubGrp ` CCfld ) ) |
||
| Assertion | efsubm | |- ( ph -> ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efabl.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| 2 | efabl.2 | |- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
|
| 3 | efabl.3 | |- ( ph -> A e. CC ) |
|
| 4 | efabl.4 | |- ( ph -> X e. ( SubGrp ` CCfld ) ) |
|
| 5 | eff | |- exp : CC --> CC |
|
| 6 | 5 | a1i | |- ( ( ph /\ x e. X ) -> exp : CC --> CC ) |
| 7 | 3 | adantr | |- ( ( ph /\ x e. X ) -> A e. CC ) |
| 8 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 9 | 8 | subgss | |- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
| 10 | 4 9 | syl | |- ( ph -> X C_ CC ) |
| 11 | 10 | sselda | |- ( ( ph /\ x e. X ) -> x e. CC ) |
| 12 | 7 11 | mulcld | |- ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) |
| 13 | 6 12 | ffvelcdmd | |- ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) |
| 14 | 13 | ralrimiva | |- ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) |
| 15 | 1 | rnmptss | |- ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) |
| 16 | 14 15 | syl | |- ( ph -> ran F C_ CC ) |
| 17 | 3 | mul01d | |- ( ph -> ( A x. 0 ) = 0 ) |
| 18 | 17 | fveq2d | |- ( ph -> ( exp ` ( A x. 0 ) ) = ( exp ` 0 ) ) |
| 19 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 20 | 18 19 | eqtrdi | |- ( ph -> ( exp ` ( A x. 0 ) ) = 1 ) |
| 21 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 22 | 21 | subg0cl | |- ( X e. ( SubGrp ` CCfld ) -> 0 e. X ) |
| 23 | 4 22 | syl | |- ( ph -> 0 e. X ) |
| 24 | fvex | |- ( exp ` ( A x. 0 ) ) e. _V |
|
| 25 | oveq2 | |- ( x = 0 -> ( A x. x ) = ( A x. 0 ) ) |
|
| 26 | 25 | fveq2d | |- ( x = 0 -> ( exp ` ( A x. x ) ) = ( exp ` ( A x. 0 ) ) ) |
| 27 | 1 26 | elrnmpt1s | |- ( ( 0 e. X /\ ( exp ` ( A x. 0 ) ) e. _V ) -> ( exp ` ( A x. 0 ) ) e. ran F ) |
| 28 | 23 24 27 | sylancl | |- ( ph -> ( exp ` ( A x. 0 ) ) e. ran F ) |
| 29 | 20 28 | eqeltrrd | |- ( ph -> 1 e. ran F ) |
| 30 | 1 2 3 4 | efabl | |- ( ph -> G e. Abel ) |
| 31 | ablgrp | |- ( G e. Abel -> G e. Grp ) |
|
| 32 | 30 31 | syl | |- ( ph -> G e. Grp ) |
| 33 | 32 | 3ad2ant1 | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> G e. Grp ) |
| 34 | simp2 | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> x e. ran F ) |
|
| 35 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 36 | 35 8 | mgpbas | |- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 37 | 2 36 | ressbas2 | |- ( ran F C_ CC -> ran F = ( Base ` G ) ) |
| 38 | 16 37 | syl | |- ( ph -> ran F = ( Base ` G ) ) |
| 39 | 38 | 3ad2ant1 | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> ran F = ( Base ` G ) ) |
| 40 | 34 39 | eleqtrd | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> x e. ( Base ` G ) ) |
| 41 | simp3 | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> y e. ran F ) |
|
| 42 | 41 39 | eleqtrd | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> y e. ( Base ` G ) ) |
| 43 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 44 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 45 | 43 44 | grpcl | |- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 46 | 33 40 42 45 | syl3anc | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 47 | 4 | mptexd | |- ( ph -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) |
| 48 | 1 47 | eqeltrid | |- ( ph -> F e. _V ) |
| 49 | rnexg | |- ( F e. _V -> ran F e. _V ) |
|
| 50 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 51 | 35 50 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 52 | 2 51 | ressplusg | |- ( ran F e. _V -> x. = ( +g ` G ) ) |
| 53 | 48 49 52 | 3syl | |- ( ph -> x. = ( +g ` G ) ) |
| 54 | 53 | 3ad2ant1 | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> x. = ( +g ` G ) ) |
| 55 | 54 | oveqd | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x x. y ) = ( x ( +g ` G ) y ) ) |
| 56 | 46 55 39 | 3eltr4d | |- ( ( ph /\ x e. ran F /\ y e. ran F ) -> ( x x. y ) e. ran F ) |
| 57 | 56 | 3expb | |- ( ( ph /\ ( x e. ran F /\ y e. ran F ) ) -> ( x x. y ) e. ran F ) |
| 58 | 57 | ralrimivva | |- ( ph -> A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) |
| 59 | cnring | |- CCfld e. Ring |
|
| 60 | 35 | ringmgp | |- ( CCfld e. Ring -> ( mulGrp ` CCfld ) e. Mnd ) |
| 61 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 62 | 35 61 | ringidval | |- 1 = ( 0g ` ( mulGrp ` CCfld ) ) |
| 63 | 36 62 51 | issubm | |- ( ( mulGrp ` CCfld ) e. Mnd -> ( ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ran F C_ CC /\ 1 e. ran F /\ A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) ) ) |
| 64 | 59 60 63 | mp2b | |- ( ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) <-> ( ran F C_ CC /\ 1 e. ran F /\ A. x e. ran F A. y e. ran F ( x x. y ) e. ran F ) ) |
| 65 | 16 29 58 64 | syl3anbrc | |- ( ph -> ran F e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |