This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The circle group T is an Abelian group. (Contributed by Paul Chapman, 25-Mar-2008) (Revised by Mario Carneiro, 13-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | circgrp.1 | |- C = ( `' abs " { 1 } ) |
|
| circgrp.2 | |- T = ( ( mulGrp ` CCfld ) |`s C ) |
||
| Assertion | circgrp | |- T e. Abel |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | circgrp.1 | |- C = ( `' abs " { 1 } ) |
|
| 2 | circgrp.2 | |- T = ( ( mulGrp ` CCfld ) |`s C ) |
|
| 3 | oveq2 | |- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
|
| 4 | 3 | fveq2d | |- ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) |
| 5 | 4 | cbvmptv | |- ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = ( y e. RR |-> ( exp ` ( _i x. y ) ) ) |
| 6 | 5 1 | efifo | |- ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C |
| 7 | forn | |- ( ( x e. RR |-> ( exp ` ( _i x. x ) ) ) : RR -onto-> C -> ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C ) |
|
| 8 | 6 7 | ax-mp | |- ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) = C |
| 9 | 8 | eqcomi | |- C = ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) |
| 10 | 9 | oveq2i | |- ( ( mulGrp ` CCfld ) |`s C ) = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) |
| 11 | 2 10 | eqtri | |- T = ( ( mulGrp ` CCfld ) |`s ran ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) |
| 12 | ax-icn | |- _i e. CC |
|
| 13 | 12 | a1i | |- ( T. -> _i e. CC ) |
| 14 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 15 | 14 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 16 | subrgsubg | |- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
|
| 17 | 15 16 | ax-mp | |- RR e. ( SubGrp ` CCfld ) |
| 18 | 17 | a1i | |- ( T. -> RR e. ( SubGrp ` CCfld ) ) |
| 19 | 5 11 13 18 | efabl | |- ( T. -> T e. Abel ) |
| 20 | 19 | mptru | |- T e. Abel |