This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efabl.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| efabl.2 | |- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
||
| efabl.3 | |- ( ph -> A e. CC ) |
||
| efabl.4 | |- ( ph -> X e. ( SubGrp ` CCfld ) ) |
||
| Assertion | efabl | |- ( ph -> G e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efabl.1 | |- F = ( x e. X |-> ( exp ` ( A x. x ) ) ) |
|
| 2 | efabl.2 | |- G = ( ( mulGrp ` CCfld ) |`s ran F ) |
|
| 3 | efabl.3 | |- ( ph -> A e. CC ) |
|
| 4 | efabl.4 | |- ( ph -> X e. ( SubGrp ` CCfld ) ) |
|
| 5 | eqid | |- ( Base ` ( CCfld |`s X ) ) = ( Base ` ( CCfld |`s X ) ) |
|
| 6 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 7 | eqid | |- ( +g ` ( CCfld |`s X ) ) = ( +g ` ( CCfld |`s X ) ) |
|
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | simp1 | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ph ) |
|
| 10 | simp2 | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. ( Base ` ( CCfld |`s X ) ) ) |
|
| 11 | eqid | |- ( CCfld |`s X ) = ( CCfld |`s X ) |
|
| 12 | 11 | subgbas | |- ( X e. ( SubGrp ` CCfld ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 13 | 4 12 | syl | |- ( ph -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 14 | 13 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> X = ( Base ` ( CCfld |`s X ) ) ) |
| 15 | 10 14 | eleqtrrd | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> x e. X ) |
| 16 | simp3 | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. ( Base ` ( CCfld |`s X ) ) ) |
|
| 17 | 16 14 | eleqtrrd | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> y e. X ) |
| 18 | 3 4 | jca | |- ( ph -> ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) ) |
| 19 | 1 | efgh | |- ( ( ( A e. CC /\ X e. ( SubGrp ` CCfld ) ) /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 20 | 18 19 | syl3an1 | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( ( F ` x ) x. ( F ` y ) ) ) |
| 21 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 22 | 11 21 | ressplusg | |- ( X e. ( SubGrp ` CCfld ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 23 | 4 22 | syl | |- ( ph -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( ph /\ x e. X /\ y e. X ) -> + = ( +g ` ( CCfld |`s X ) ) ) |
| 25 | 24 | oveqd | |- ( ( ph /\ x e. X /\ y e. X ) -> ( x + y ) = ( x ( +g ` ( CCfld |`s X ) ) y ) ) |
| 26 | 25 | fveq2d | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x + y ) ) = ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) ) |
| 27 | mptexg | |- ( X e. ( SubGrp ` CCfld ) -> ( x e. X |-> ( exp ` ( A x. x ) ) ) e. _V ) |
|
| 28 | 1 27 | eqeltrid | |- ( X e. ( SubGrp ` CCfld ) -> F e. _V ) |
| 29 | rnexg | |- ( F e. _V -> ran F e. _V ) |
|
| 30 | eqid | |- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
|
| 31 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 32 | 30 31 | mgpplusg | |- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 33 | 2 32 | ressplusg | |- ( ran F e. _V -> x. = ( +g ` G ) ) |
| 34 | 4 28 29 33 | 4syl | |- ( ph -> x. = ( +g ` G ) ) |
| 35 | 34 | 3ad2ant1 | |- ( ( ph /\ x e. X /\ y e. X ) -> x. = ( +g ` G ) ) |
| 36 | 35 | oveqd | |- ( ( ph /\ x e. X /\ y e. X ) -> ( ( F ` x ) x. ( F ` y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 37 | 20 26 36 | 3eqtr3d | |- ( ( ph /\ x e. X /\ y e. X ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 38 | 9 15 17 37 | syl3anc | |- ( ( ph /\ x e. ( Base ` ( CCfld |`s X ) ) /\ y e. ( Base ` ( CCfld |`s X ) ) ) -> ( F ` ( x ( +g ` ( CCfld |`s X ) ) y ) ) = ( ( F ` x ) ( +g ` G ) ( F ` y ) ) ) |
| 39 | fvex | |- ( exp ` ( A x. x ) ) e. _V |
|
| 40 | 39 1 | fnmpti | |- F Fn X |
| 41 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 42 | 40 41 | mpbi | |- F : X -onto-> ran F |
| 43 | eqidd | |- ( ph -> F = F ) |
|
| 44 | eff | |- exp : CC --> CC |
|
| 45 | 44 | a1i | |- ( ( ph /\ x e. X ) -> exp : CC --> CC ) |
| 46 | 3 | adantr | |- ( ( ph /\ x e. X ) -> A e. CC ) |
| 47 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 48 | 47 | subgss | |- ( X e. ( SubGrp ` CCfld ) -> X C_ CC ) |
| 49 | 4 48 | syl | |- ( ph -> X C_ CC ) |
| 50 | 49 | sselda | |- ( ( ph /\ x e. X ) -> x e. CC ) |
| 51 | 46 50 | mulcld | |- ( ( ph /\ x e. X ) -> ( A x. x ) e. CC ) |
| 52 | 45 51 | ffvelcdmd | |- ( ( ph /\ x e. X ) -> ( exp ` ( A x. x ) ) e. CC ) |
| 53 | 52 | ralrimiva | |- ( ph -> A. x e. X ( exp ` ( A x. x ) ) e. CC ) |
| 54 | 1 | rnmptss | |- ( A. x e. X ( exp ` ( A x. x ) ) e. CC -> ran F C_ CC ) |
| 55 | 30 47 | mgpbas | |- CC = ( Base ` ( mulGrp ` CCfld ) ) |
| 56 | 2 55 | ressbas2 | |- ( ran F C_ CC -> ran F = ( Base ` G ) ) |
| 57 | 53 54 56 | 3syl | |- ( ph -> ran F = ( Base ` G ) ) |
| 58 | 43 13 57 | foeq123d | |- ( ph -> ( F : X -onto-> ran F <-> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) ) |
| 59 | 42 58 | mpbii | |- ( ph -> F : ( Base ` ( CCfld |`s X ) ) -onto-> ( Base ` G ) ) |
| 60 | cnring | |- CCfld e. Ring |
|
| 61 | ringabl | |- ( CCfld e. Ring -> CCfld e. Abel ) |
|
| 62 | 60 61 | ax-mp | |- CCfld e. Abel |
| 63 | 11 | subgabl | |- ( ( CCfld e. Abel /\ X e. ( SubGrp ` CCfld ) ) -> ( CCfld |`s X ) e. Abel ) |
| 64 | 62 4 63 | sylancr | |- ( ph -> ( CCfld |`s X ) e. Abel ) |
| 65 | 5 6 7 8 38 59 64 | ghmabl | |- ( ph -> G e. Abel ) |