This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efnnfsumcl.1 | |- ( ph -> A e. Fin ) |
|
| efnnfsumcl.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| efnnfsumcl.3 | |- ( ( ph /\ k e. A ) -> ( exp ` B ) e. NN ) |
||
| Assertion | efnnfsumcl | |- ( ph -> ( exp ` sum_ k e. A B ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efnnfsumcl.1 | |- ( ph -> A e. Fin ) |
|
| 2 | efnnfsumcl.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | efnnfsumcl.3 | |- ( ( ph /\ k e. A ) -> ( exp ` B ) e. NN ) |
|
| 4 | ssrab2 | |- { x e. RR | ( exp ` x ) e. NN } C_ RR |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | 4 5 | sstri | |- { x e. RR | ( exp ` x ) e. NN } C_ CC |
| 7 | 6 | a1i | |- ( ph -> { x e. RR | ( exp ` x ) e. NN } C_ CC ) |
| 8 | fveq2 | |- ( x = y -> ( exp ` x ) = ( exp ` y ) ) |
|
| 9 | 8 | eleq1d | |- ( x = y -> ( ( exp ` x ) e. NN <-> ( exp ` y ) e. NN ) ) |
| 10 | 9 | elrab | |- ( y e. { x e. RR | ( exp ` x ) e. NN } <-> ( y e. RR /\ ( exp ` y ) e. NN ) ) |
| 11 | fveq2 | |- ( x = z -> ( exp ` x ) = ( exp ` z ) ) |
|
| 12 | 11 | eleq1d | |- ( x = z -> ( ( exp ` x ) e. NN <-> ( exp ` z ) e. NN ) ) |
| 13 | 12 | elrab | |- ( z e. { x e. RR | ( exp ` x ) e. NN } <-> ( z e. RR /\ ( exp ` z ) e. NN ) ) |
| 14 | fveq2 | |- ( x = ( y + z ) -> ( exp ` x ) = ( exp ` ( y + z ) ) ) |
|
| 15 | 14 | eleq1d | |- ( x = ( y + z ) -> ( ( exp ` x ) e. NN <-> ( exp ` ( y + z ) ) e. NN ) ) |
| 16 | simpll | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. RR ) |
|
| 17 | simprl | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. RR ) |
|
| 18 | 16 17 | readdcld | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. RR ) |
| 19 | 16 | recnd | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> y e. CC ) |
| 20 | 17 | recnd | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> z e. CC ) |
| 21 | efadd | |- ( ( y e. CC /\ z e. CC ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) = ( ( exp ` y ) x. ( exp ` z ) ) ) |
| 23 | nnmulcl | |- ( ( ( exp ` y ) e. NN /\ ( exp ` z ) e. NN ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
|
| 24 | 23 | ad2ant2l | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( ( exp ` y ) x. ( exp ` z ) ) e. NN ) |
| 25 | 22 24 | eqeltrd | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( exp ` ( y + z ) ) e. NN ) |
| 26 | 15 18 25 | elrabd | |- ( ( ( y e. RR /\ ( exp ` y ) e. NN ) /\ ( z e. RR /\ ( exp ` z ) e. NN ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 27 | 10 13 26 | syl2anb | |- ( ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 28 | 27 | adantl | |- ( ( ph /\ ( y e. { x e. RR | ( exp ` x ) e. NN } /\ z e. { x e. RR | ( exp ` x ) e. NN } ) ) -> ( y + z ) e. { x e. RR | ( exp ` x ) e. NN } ) |
| 29 | fveq2 | |- ( x = B -> ( exp ` x ) = ( exp ` B ) ) |
|
| 30 | 29 | eleq1d | |- ( x = B -> ( ( exp ` x ) e. NN <-> ( exp ` B ) e. NN ) ) |
| 31 | 30 2 3 | elrabd | |- ( ( ph /\ k e. A ) -> B e. { x e. RR | ( exp ` x ) e. NN } ) |
| 32 | 0re | |- 0 e. RR |
|
| 33 | 1nn | |- 1 e. NN |
|
| 34 | fveq2 | |- ( x = 0 -> ( exp ` x ) = ( exp ` 0 ) ) |
|
| 35 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 36 | 34 35 | eqtrdi | |- ( x = 0 -> ( exp ` x ) = 1 ) |
| 37 | 36 | eleq1d | |- ( x = 0 -> ( ( exp ` x ) e. NN <-> 1 e. NN ) ) |
| 38 | 37 | elrab | |- ( 0 e. { x e. RR | ( exp ` x ) e. NN } <-> ( 0 e. RR /\ 1 e. NN ) ) |
| 39 | 32 33 38 | mpbir2an | |- 0 e. { x e. RR | ( exp ` x ) e. NN } |
| 40 | 39 | a1i | |- ( ph -> 0 e. { x e. RR | ( exp ` x ) e. NN } ) |
| 41 | 7 28 1 31 40 | fsumcllem | |- ( ph -> sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } ) |
| 42 | fveq2 | |- ( x = sum_ k e. A B -> ( exp ` x ) = ( exp ` sum_ k e. A B ) ) |
|
| 43 | 42 | eleq1d | |- ( x = sum_ k e. A B -> ( ( exp ` x ) e. NN <-> ( exp ` sum_ k e. A B ) e. NN ) ) |
| 44 | 43 | elrab | |- ( sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } <-> ( sum_ k e. A B e. RR /\ ( exp ` sum_ k e. A B ) e. NN ) ) |
| 45 | 44 | simprbi | |- ( sum_ k e. A B e. { x e. RR | ( exp ` x ) e. NN } -> ( exp ` sum_ k e. A B ) e. NN ) |
| 46 | 41 45 | syl | |- ( ph -> ( exp ` sum_ k e. A B ) e. NN ) |