This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005) (Revised by Mario Carneiro, 3-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcllem.1 | |- ( ph -> S C_ CC ) |
|
| fsumcllem.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
||
| fsumcllem.3 | |- ( ph -> A e. Fin ) |
||
| fsumcllem.4 | |- ( ( ph /\ k e. A ) -> B e. S ) |
||
| fsumcllem.5 | |- ( ph -> 0 e. S ) |
||
| Assertion | fsumcllem | |- ( ph -> sum_ k e. A B e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcllem.1 | |- ( ph -> S C_ CC ) |
|
| 2 | fsumcllem.2 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
|
| 3 | fsumcllem.3 | |- ( ph -> A e. Fin ) |
|
| 4 | fsumcllem.4 | |- ( ( ph /\ k e. A ) -> B e. S ) |
|
| 5 | fsumcllem.5 | |- ( ph -> 0 e. S ) |
|
| 6 | simpr | |- ( ( ph /\ A = (/) ) -> A = (/) ) |
|
| 7 | 6 | sumeq1d | |- ( ( ph /\ A = (/) ) -> sum_ k e. A B = sum_ k e. (/) B ) |
| 8 | sum0 | |- sum_ k e. (/) B = 0 |
|
| 9 | 7 8 | eqtrdi | |- ( ( ph /\ A = (/) ) -> sum_ k e. A B = 0 ) |
| 10 | 5 | adantr | |- ( ( ph /\ A = (/) ) -> 0 e. S ) |
| 11 | 9 10 | eqeltrd | |- ( ( ph /\ A = (/) ) -> sum_ k e. A B e. S ) |
| 12 | 1 | adantr | |- ( ( ph /\ A =/= (/) ) -> S C_ CC ) |
| 13 | 2 | adantlr | |- ( ( ( ph /\ A =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x + y ) e. S ) |
| 14 | 3 | adantr | |- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
| 15 | 4 | adantlr | |- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
| 16 | simpr | |- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
|
| 17 | 12 13 14 15 16 | fsumcl2lem | |- ( ( ph /\ A =/= (/) ) -> sum_ k e. A B e. S ) |
| 18 | 11 17 | pm2.61dane | |- ( ph -> sum_ k e. A B e. S ) |