This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite sum closure in the log-integers. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efnnfsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| efnnfsumcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| efnnfsumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( exp ‘ 𝐵 ) ∈ ℕ ) | ||
| Assertion | efnnfsumcl | ⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efnnfsumcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | efnnfsumcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | efnnfsumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( exp ‘ 𝐵 ) ∈ ℕ ) | |
| 4 | ssrab2 | ⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℝ | |
| 5 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 6 | 4 5 | sstri | ⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ |
| 7 | 6 | a1i | ⊢ ( 𝜑 → { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 10 | 9 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑧 ) ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 13 | 12 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
| 14 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝑦 + 𝑧 ) ) ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) ) |
| 16 | simpll | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℝ ) | |
| 17 | simprl | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℝ ) | |
| 18 | 16 17 | readdcld | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
| 19 | 16 | recnd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
| 20 | 17 | recnd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
| 21 | efadd | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) | |
| 22 | 19 20 21 | syl2anc | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
| 23 | nnmulcl | ⊢ ( ( ( exp ‘ 𝑦 ) ∈ ℕ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) | |
| 24 | 23 | ad2ant2l | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
| 25 | 22 24 | eqeltrd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) |
| 26 | 15 18 25 | elrabd | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 27 | 10 13 26 | syl2anb | ⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 29 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝐵 ) ) | |
| 30 | 29 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝐵 ) ∈ ℕ ) ) |
| 31 | 30 2 3 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 32 | 0re | ⊢ 0 ∈ ℝ | |
| 33 | 1nn | ⊢ 1 ∈ ℕ | |
| 34 | fveq2 | ⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = ( exp ‘ 0 ) ) | |
| 35 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
| 36 | 34 35 | eqtrdi | ⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = 1 ) |
| 37 | 36 | eleq1d | ⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
| 38 | 37 | elrab | ⊢ ( 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 0 ∈ ℝ ∧ 1 ∈ ℕ ) ) |
| 39 | 32 33 38 | mpbir2an | ⊢ 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } |
| 40 | 39 | a1i | ⊢ ( 𝜑 → 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 41 | 7 28 1 31 40 | fsumcllem | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
| 42 | fveq2 | ⊢ ( 𝑥 = Σ 𝑘 ∈ 𝐴 𝐵 → ( exp ‘ 𝑥 ) = ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 43 | 42 | eleq1d | ⊢ ( 𝑥 = Σ 𝑘 ∈ 𝐴 𝐵 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) ) |
| 44 | 43 | elrab | ⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ∧ ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) ) |
| 45 | 44 | simprbi | ⊢ ( Σ 𝑘 ∈ 𝐴 𝐵 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } → ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) |
| 46 | 41 45 | syl | ⊢ ( 𝜑 → ( exp ‘ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ℕ ) |