This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential function for integers. Special case of efval . Equation 30 of Rudin p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efzval | |- ( N e. ZZ -> ( exp ` N ) = ( _e ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | 1 | mulridd | |- ( N e. ZZ -> ( N x. 1 ) = N ) |
| 3 | 2 | fveq2d | |- ( N e. ZZ -> ( exp ` ( N x. 1 ) ) = ( exp ` N ) ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | efexp | |- ( ( 1 e. CC /\ N e. ZZ ) -> ( exp ` ( N x. 1 ) ) = ( ( exp ` 1 ) ^ N ) ) |
|
| 6 | 4 5 | mpan | |- ( N e. ZZ -> ( exp ` ( N x. 1 ) ) = ( ( exp ` 1 ) ^ N ) ) |
| 7 | 3 6 | eqtr3d | |- ( N e. ZZ -> ( exp ` N ) = ( ( exp ` 1 ) ^ N ) ) |
| 8 | df-e | |- _e = ( exp ` 1 ) |
|
| 9 | 8 | oveq1i | |- ( _e ^ N ) = ( ( exp ` 1 ) ^ N ) |
| 10 | 7 9 | eqtr4di | |- ( N e. ZZ -> ( exp ` N ) = ( _e ^ N ) ) |