This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftval.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | ef0lem | |- ( A = 0 -> seq 0 ( + , F ) ~~> 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftval.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | simpr | |- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> k e. ( ZZ>= ` 0 ) ) |
|
| 3 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 4 | 2 3 | eleqtrrdi | |- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> k e. NN0 ) |
| 5 | elnn0 | |- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
|
| 6 | 4 5 | sylib | |- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> ( k e. NN \/ k = 0 ) ) |
| 7 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 8 | 7 | adantl | |- ( ( A = 0 /\ k e. NN ) -> k e. NN0 ) |
| 9 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 10 | 8 9 | syl | |- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 11 | oveq1 | |- ( A = 0 -> ( A ^ k ) = ( 0 ^ k ) ) |
|
| 12 | 0exp | |- ( k e. NN -> ( 0 ^ k ) = 0 ) |
|
| 13 | 11 12 | sylan9eq | |- ( ( A = 0 /\ k e. NN ) -> ( A ^ k ) = 0 ) |
| 14 | 13 | oveq1d | |- ( ( A = 0 /\ k e. NN ) -> ( ( A ^ k ) / ( ! ` k ) ) = ( 0 / ( ! ` k ) ) ) |
| 15 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 16 | nncn | |- ( ( ! ` k ) e. NN -> ( ! ` k ) e. CC ) |
|
| 17 | nnne0 | |- ( ( ! ` k ) e. NN -> ( ! ` k ) =/= 0 ) |
|
| 18 | 16 17 | div0d | |- ( ( ! ` k ) e. NN -> ( 0 / ( ! ` k ) ) = 0 ) |
| 19 | 8 15 18 | 3syl | |- ( ( A = 0 /\ k e. NN ) -> ( 0 / ( ! ` k ) ) = 0 ) |
| 20 | 10 14 19 | 3eqtrd | |- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = 0 ) |
| 21 | nnne0 | |- ( k e. NN -> k =/= 0 ) |
|
| 22 | velsn | |- ( k e. { 0 } <-> k = 0 ) |
|
| 23 | 22 | necon3bbii | |- ( -. k e. { 0 } <-> k =/= 0 ) |
| 24 | 21 23 | sylibr | |- ( k e. NN -> -. k e. { 0 } ) |
| 25 | 24 | adantl | |- ( ( A = 0 /\ k e. NN ) -> -. k e. { 0 } ) |
| 26 | 25 | iffalsed | |- ( ( A = 0 /\ k e. NN ) -> if ( k e. { 0 } , 1 , 0 ) = 0 ) |
| 27 | 20 26 | eqtr4d | |- ( ( A = 0 /\ k e. NN ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
| 28 | fveq2 | |- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
|
| 29 | oveq1 | |- ( A = 0 -> ( A ^ 0 ) = ( 0 ^ 0 ) ) |
|
| 30 | 0exp0e1 | |- ( 0 ^ 0 ) = 1 |
|
| 31 | 29 30 | eqtrdi | |- ( A = 0 -> ( A ^ 0 ) = 1 ) |
| 32 | 31 | oveq1d | |- ( A = 0 -> ( ( A ^ 0 ) / ( ! ` 0 ) ) = ( 1 / ( ! ` 0 ) ) ) |
| 33 | 0nn0 | |- 0 e. NN0 |
|
| 34 | 1 | eftval | |- ( 0 e. NN0 -> ( F ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) ) |
| 35 | 33 34 | ax-mp | |- ( F ` 0 ) = ( ( A ^ 0 ) / ( ! ` 0 ) ) |
| 36 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 37 | 36 | oveq2i | |- ( 1 / ( ! ` 0 ) ) = ( 1 / 1 ) |
| 38 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 39 | 37 38 | eqtr2i | |- 1 = ( 1 / ( ! ` 0 ) ) |
| 40 | 32 35 39 | 3eqtr4g | |- ( A = 0 -> ( F ` 0 ) = 1 ) |
| 41 | 28 40 | sylan9eqr | |- ( ( A = 0 /\ k = 0 ) -> ( F ` k ) = 1 ) |
| 42 | simpr | |- ( ( A = 0 /\ k = 0 ) -> k = 0 ) |
|
| 43 | 42 22 | sylibr | |- ( ( A = 0 /\ k = 0 ) -> k e. { 0 } ) |
| 44 | 43 | iftrued | |- ( ( A = 0 /\ k = 0 ) -> if ( k e. { 0 } , 1 , 0 ) = 1 ) |
| 45 | 41 44 | eqtr4d | |- ( ( A = 0 /\ k = 0 ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
| 46 | 27 45 | jaodan | |- ( ( A = 0 /\ ( k e. NN \/ k = 0 ) ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
| 47 | 6 46 | syldan | |- ( ( A = 0 /\ k e. ( ZZ>= ` 0 ) ) -> ( F ` k ) = if ( k e. { 0 } , 1 , 0 ) ) |
| 48 | 33 3 | eleqtri | |- 0 e. ( ZZ>= ` 0 ) |
| 49 | 48 | a1i | |- ( A = 0 -> 0 e. ( ZZ>= ` 0 ) ) |
| 50 | 1cnd | |- ( ( A = 0 /\ k e. { 0 } ) -> 1 e. CC ) |
|
| 51 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 52 | 51 | eqimss2i | |- { 0 } C_ ( 0 ... 0 ) |
| 53 | 52 | a1i | |- ( A = 0 -> { 0 } C_ ( 0 ... 0 ) ) |
| 54 | 47 49 50 53 | fsumcvg2 | |- ( A = 0 -> seq 0 ( + , F ) ~~> ( seq 0 ( + , F ) ` 0 ) ) |
| 55 | 0z | |- 0 e. ZZ |
|
| 56 | 55 40 | seq1i | |- ( A = 0 -> ( seq 0 ( + , F ) ` 0 ) = 1 ) |
| 57 | 54 56 | breqtrd | |- ( A = 0 -> seq 0 ( + , F ) ~~> 1 ) |