This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of an R -well-ordered class has a unique R -minimal element. (Contributed by NM, 18-Mar-1997) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wereu | |- ( ( R We A /\ ( B e. V /\ B C_ A /\ B =/= (/) ) ) -> E! x e. B A. y e. B -. y R x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr | |- ( R We A -> R Fr A ) |
|
| 2 | fri | |- ( ( ( B e. V /\ R Fr A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B A. y e. B -. y R x ) |
|
| 3 | 2 | exp32 | |- ( ( B e. V /\ R Fr A ) -> ( B C_ A -> ( B =/= (/) -> E. x e. B A. y e. B -. y R x ) ) ) |
| 4 | 3 | expcom | |- ( R Fr A -> ( B e. V -> ( B C_ A -> ( B =/= (/) -> E. x e. B A. y e. B -. y R x ) ) ) ) |
| 5 | 4 | 3imp2 | |- ( ( R Fr A /\ ( B e. V /\ B C_ A /\ B =/= (/) ) ) -> E. x e. B A. y e. B -. y R x ) |
| 6 | 1 5 | sylan | |- ( ( R We A /\ ( B e. V /\ B C_ A /\ B =/= (/) ) ) -> E. x e. B A. y e. B -. y R x ) |
| 7 | weso | |- ( R We A -> R Or A ) |
|
| 8 | soss | |- ( B C_ A -> ( R Or A -> R Or B ) ) |
|
| 9 | 7 8 | mpan9 | |- ( ( R We A /\ B C_ A ) -> R Or B ) |
| 10 | somo | |- ( R Or B -> E* x e. B A. y e. B -. y R x ) |
|
| 11 | 9 10 | syl | |- ( ( R We A /\ B C_ A ) -> E* x e. B A. y e. B -. y R x ) |
| 12 | 11 | 3ad2antr2 | |- ( ( R We A /\ ( B e. V /\ B C_ A /\ B =/= (/) ) ) -> E* x e. B A. y e. B -. y R x ) |
| 13 | reu5 | |- ( E! x e. B A. y e. B -. y R x <-> ( E. x e. B A. y e. B -. y R x /\ E* x e. B A. y e. B -. y R x ) ) |
|
| 14 | 6 12 13 | sylanbrc | |- ( ( R We A /\ ( B e. V /\ B C_ A /\ B =/= (/) ) ) -> E! x e. B A. y e. B -. y R x ) |