This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dyadmax . (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| dyadmax.2 | |- ( ph -> A e. ZZ ) |
||
| dyadmax.3 | |- ( ph -> B e. ZZ ) |
||
| dyadmax.4 | |- ( ph -> C e. NN0 ) |
||
| dyadmax.5 | |- ( ph -> D e. NN0 ) |
||
| dyadmax.6 | |- ( ph -> -. D < C ) |
||
| dyadmax.7 | |- ( ph -> ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) |
||
| Assertion | dyadmaxlem | |- ( ph -> ( A = B /\ C = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dyadmbl.1 | |- F = ( x e. ZZ , y e. NN0 |-> <. ( x / ( 2 ^ y ) ) , ( ( x + 1 ) / ( 2 ^ y ) ) >. ) |
|
| 2 | dyadmax.2 | |- ( ph -> A e. ZZ ) |
|
| 3 | dyadmax.3 | |- ( ph -> B e. ZZ ) |
|
| 4 | dyadmax.4 | |- ( ph -> C e. NN0 ) |
|
| 5 | dyadmax.5 | |- ( ph -> D e. NN0 ) |
|
| 6 | dyadmax.6 | |- ( ph -> -. D < C ) |
|
| 7 | dyadmax.7 | |- ( ph -> ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) ) |
|
| 8 | 1 | dyadval | |- ( ( A e. ZZ /\ C e. NN0 ) -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 9 | 2 4 8 | syl2anc | |- ( ph -> ( A F C ) = <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
| 10 | 9 | fveq2d | |- ( ph -> ( [,] ` ( A F C ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) ) |
| 11 | df-ov | |- ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) = ( [,] ` <. ( A / ( 2 ^ C ) ) , ( ( A + 1 ) / ( 2 ^ C ) ) >. ) |
|
| 12 | 10 11 | eqtr4di | |- ( ph -> ( [,] ` ( A F C ) ) = ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 13 | 1 | dyadss | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. NN0 /\ D e. NN0 ) ) -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) |
| 14 | 2 3 4 5 13 | syl22anc | |- ( ph -> ( ( [,] ` ( A F C ) ) C_ ( [,] ` ( B F D ) ) -> D <_ C ) ) |
| 15 | 7 14 | mpd | |- ( ph -> D <_ C ) |
| 16 | 5 | nn0red | |- ( ph -> D e. RR ) |
| 17 | 4 | nn0red | |- ( ph -> C e. RR ) |
| 18 | 16 17 | eqleltd | |- ( ph -> ( D = C <-> ( D <_ C /\ -. D < C ) ) ) |
| 19 | 15 6 18 | mpbir2and | |- ( ph -> D = C ) |
| 20 | 19 | oveq2d | |- ( ph -> ( B F D ) = ( B F C ) ) |
| 21 | 1 | dyadval | |- ( ( B e. ZZ /\ C e. NN0 ) -> ( B F C ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) |
| 22 | 3 4 21 | syl2anc | |- ( ph -> ( B F C ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) |
| 23 | 20 22 | eqtrd | |- ( ph -> ( B F D ) = <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) |
| 24 | 23 | fveq2d | |- ( ph -> ( [,] ` ( B F D ) ) = ( [,] ` <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) ) |
| 25 | df-ov | |- ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) = ( [,] ` <. ( B / ( 2 ^ C ) ) , ( ( B + 1 ) / ( 2 ^ C ) ) >. ) |
|
| 26 | 24 25 | eqtr4di | |- ( ph -> ( [,] ` ( B F D ) ) = ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 27 | 7 12 26 | 3sstr3d | |- ( ph -> ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) C_ ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 28 | 2 | zred | |- ( ph -> A e. RR ) |
| 29 | 2nn | |- 2 e. NN |
|
| 30 | nnexpcl | |- ( ( 2 e. NN /\ C e. NN0 ) -> ( 2 ^ C ) e. NN ) |
|
| 31 | 29 4 30 | sylancr | |- ( ph -> ( 2 ^ C ) e. NN ) |
| 32 | 28 31 | nndivred | |- ( ph -> ( A / ( 2 ^ C ) ) e. RR ) |
| 33 | 32 | rexrd | |- ( ph -> ( A / ( 2 ^ C ) ) e. RR* ) |
| 34 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 35 | 28 34 | syl | |- ( ph -> ( A + 1 ) e. RR ) |
| 36 | 35 31 | nndivred | |- ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR ) |
| 37 | 36 | rexrd | |- ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* ) |
| 38 | 28 | lep1d | |- ( ph -> A <_ ( A + 1 ) ) |
| 39 | 31 | nnred | |- ( ph -> ( 2 ^ C ) e. RR ) |
| 40 | 31 | nngt0d | |- ( ph -> 0 < ( 2 ^ C ) ) |
| 41 | lediv1 | |- ( ( A e. RR /\ ( A + 1 ) e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
|
| 42 | 28 35 39 40 41 | syl112anc | |- ( ph -> ( A <_ ( A + 1 ) <-> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 43 | 38 42 | mpbid | |- ( ph -> ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) |
| 44 | ubicc2 | |- ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* /\ ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
|
| 45 | 33 37 43 44 | syl3anc | |- ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 46 | 27 45 | sseldd | |- ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 47 | 3 | zred | |- ( ph -> B e. RR ) |
| 48 | 47 31 | nndivred | |- ( ph -> ( B / ( 2 ^ C ) ) e. RR ) |
| 49 | peano2re | |- ( B e. RR -> ( B + 1 ) e. RR ) |
|
| 50 | 47 49 | syl | |- ( ph -> ( B + 1 ) e. RR ) |
| 51 | 50 31 | nndivred | |- ( ph -> ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) |
| 52 | elicc2 | |- ( ( ( B / ( 2 ^ C ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) |
|
| 53 | 48 51 52 | syl2anc | |- ( ph -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) |
| 54 | 46 53 | mpbid | |- ( ph -> ( ( ( A + 1 ) / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) /\ ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 55 | 54 | simp3d | |- ( ph -> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) |
| 56 | lediv1 | |- ( ( ( A + 1 ) e. RR /\ ( B + 1 ) e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( ( A + 1 ) <_ ( B + 1 ) <-> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
|
| 57 | 35 50 39 40 56 | syl112anc | |- ( ph -> ( ( A + 1 ) <_ ( B + 1 ) <-> ( ( A + 1 ) / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 58 | 55 57 | mpbird | |- ( ph -> ( A + 1 ) <_ ( B + 1 ) ) |
| 59 | 1red | |- ( ph -> 1 e. RR ) |
|
| 60 | 28 47 59 | leadd1d | |- ( ph -> ( A <_ B <-> ( A + 1 ) <_ ( B + 1 ) ) ) |
| 61 | 58 60 | mpbird | |- ( ph -> A <_ B ) |
| 62 | lbicc2 | |- ( ( ( A / ( 2 ^ C ) ) e. RR* /\ ( ( A + 1 ) / ( 2 ^ C ) ) e. RR* /\ ( A / ( 2 ^ C ) ) <_ ( ( A + 1 ) / ( 2 ^ C ) ) ) -> ( A / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
|
| 63 | 33 37 43 62 | syl3anc | |- ( ph -> ( A / ( 2 ^ C ) ) e. ( ( A / ( 2 ^ C ) ) [,] ( ( A + 1 ) / ( 2 ^ C ) ) ) ) |
| 64 | 27 63 | sseldd | |- ( ph -> ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 65 | elicc2 | |- ( ( ( B / ( 2 ^ C ) ) e. RR /\ ( ( B + 1 ) / ( 2 ^ C ) ) e. RR ) -> ( ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) |
|
| 66 | 48 51 65 | syl2anc | |- ( ph -> ( ( A / ( 2 ^ C ) ) e. ( ( B / ( 2 ^ C ) ) [,] ( ( B + 1 ) / ( 2 ^ C ) ) ) <-> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) ) |
| 67 | 64 66 | mpbid | |- ( ph -> ( ( A / ( 2 ^ C ) ) e. RR /\ ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) /\ ( A / ( 2 ^ C ) ) <_ ( ( B + 1 ) / ( 2 ^ C ) ) ) ) |
| 68 | 67 | simp2d | |- ( ph -> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) |
| 69 | lediv1 | |- ( ( B e. RR /\ A e. RR /\ ( ( 2 ^ C ) e. RR /\ 0 < ( 2 ^ C ) ) ) -> ( B <_ A <-> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) ) |
|
| 70 | 47 28 39 40 69 | syl112anc | |- ( ph -> ( B <_ A <-> ( B / ( 2 ^ C ) ) <_ ( A / ( 2 ^ C ) ) ) ) |
| 71 | 68 70 | mpbird | |- ( ph -> B <_ A ) |
| 72 | 28 47 | letri3d | |- ( ph -> ( A = B <-> ( A <_ B /\ B <_ A ) ) ) |
| 73 | 61 71 72 | mpbir2and | |- ( ph -> A = B ) |
| 74 | 19 | eqcomd | |- ( ph -> C = D ) |
| 75 | 73 74 | jca | |- ( ph -> ( A = B /\ C = D ) ) |