This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcmul.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvcmul.f | |- ( ph -> F : X --> CC ) |
||
| dvcmul.a | |- ( ph -> A e. CC ) |
||
| dvcmul.x | |- ( ph -> X C_ S ) |
||
| dvcmul.c | |- ( ph -> C e. dom ( S _D F ) ) |
||
| Assertion | dvcmul | |- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcmul.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvcmul.f | |- ( ph -> F : X --> CC ) |
|
| 3 | dvcmul.a | |- ( ph -> A e. CC ) |
|
| 4 | dvcmul.x | |- ( ph -> X C_ S ) |
|
| 5 | dvcmul.c | |- ( ph -> C e. dom ( S _D F ) ) |
|
| 6 | fconst6g | |- ( A e. CC -> ( S X. { A } ) : S --> CC ) |
|
| 7 | 3 6 | syl | |- ( ph -> ( S X. { A } ) : S --> CC ) |
| 8 | ssidd | |- ( ph -> S C_ S ) |
|
| 9 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 10 | 1 9 | syl | |- ( ph -> S C_ CC ) |
| 11 | 10 2 4 | dvbss | |- ( ph -> dom ( S _D F ) C_ X ) |
| 12 | 11 5 | sseldd | |- ( ph -> C e. X ) |
| 13 | 4 12 | sseldd | |- ( ph -> C e. S ) |
| 14 | fconst6g | |- ( A e. CC -> ( CC X. { A } ) : CC --> CC ) |
|
| 15 | 3 14 | syl | |- ( ph -> ( CC X. { A } ) : CC --> CC ) |
| 16 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 17 | dvconst | |- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
|
| 18 | 3 17 | syl | |- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 19 | 18 | dmeqd | |- ( ph -> dom ( CC _D ( CC X. { A } ) ) = dom ( CC X. { 0 } ) ) |
| 20 | c0ex | |- 0 e. _V |
|
| 21 | 20 | fconst | |- ( CC X. { 0 } ) : CC --> { 0 } |
| 22 | 21 | fdmi | |- dom ( CC X. { 0 } ) = CC |
| 23 | 19 22 | eqtrdi | |- ( ph -> dom ( CC _D ( CC X. { A } ) ) = CC ) |
| 24 | 10 23 | sseqtrrd | |- ( ph -> S C_ dom ( CC _D ( CC X. { A } ) ) ) |
| 25 | dvres3 | |- ( ( ( S e. { RR , CC } /\ ( CC X. { A } ) : CC --> CC ) /\ ( CC C_ CC /\ S C_ dom ( CC _D ( CC X. { A } ) ) ) ) -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
|
| 26 | 1 15 16 24 25 | syl22anc | |- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( ( CC _D ( CC X. { A } ) ) |` S ) ) |
| 27 | xpssres | |- ( S C_ CC -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
|
| 28 | 10 27 | syl | |- ( ph -> ( ( CC X. { A } ) |` S ) = ( S X. { A } ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( S _D ( ( CC X. { A } ) |` S ) ) = ( S _D ( S X. { A } ) ) ) |
| 30 | 18 | reseq1d | |- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( ( CC X. { 0 } ) |` S ) ) |
| 31 | xpssres | |- ( S C_ CC -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
|
| 32 | 10 31 | syl | |- ( ph -> ( ( CC X. { 0 } ) |` S ) = ( S X. { 0 } ) ) |
| 33 | 30 32 | eqtrd | |- ( ph -> ( ( CC _D ( CC X. { A } ) ) |` S ) = ( S X. { 0 } ) ) |
| 34 | 26 29 33 | 3eqtr3d | |- ( ph -> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 35 | 20 | fconst2 | |- ( ( S _D ( S X. { A } ) ) : S --> { 0 } <-> ( S _D ( S X. { A } ) ) = ( S X. { 0 } ) ) |
| 36 | 34 35 | sylibr | |- ( ph -> ( S _D ( S X. { A } ) ) : S --> { 0 } ) |
| 37 | 36 | fdmd | |- ( ph -> dom ( S _D ( S X. { A } ) ) = S ) |
| 38 | 13 37 | eleqtrrd | |- ( ph -> C e. dom ( S _D ( S X. { A } ) ) ) |
| 39 | 7 8 2 4 1 38 5 | dvmul | |- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) ) |
| 40 | 34 | fveq1d | |- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = ( ( S X. { 0 } ) ` C ) ) |
| 41 | 20 | fvconst2 | |- ( C e. S -> ( ( S X. { 0 } ) ` C ) = 0 ) |
| 42 | 13 41 | syl | |- ( ph -> ( ( S X. { 0 } ) ` C ) = 0 ) |
| 43 | 40 42 | eqtrd | |- ( ph -> ( ( S _D ( S X. { A } ) ) ` C ) = 0 ) |
| 44 | 43 | oveq1d | |- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = ( 0 x. ( F ` C ) ) ) |
| 45 | 2 12 | ffvelcdmd | |- ( ph -> ( F ` C ) e. CC ) |
| 46 | 45 | mul02d | |- ( ph -> ( 0 x. ( F ` C ) ) = 0 ) |
| 47 | 44 46 | eqtrd | |- ( ph -> ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) = 0 ) |
| 48 | fvconst2g | |- ( ( A e. CC /\ C e. S ) -> ( ( S X. { A } ) ` C ) = A ) |
|
| 49 | 3 13 48 | syl2anc | |- ( ph -> ( ( S X. { A } ) ` C ) = A ) |
| 50 | 49 | oveq2d | |- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( ( ( S _D F ) ` C ) x. A ) ) |
| 51 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 52 | 1 51 | syl | |- ( ph -> ( S _D F ) : dom ( S _D F ) --> CC ) |
| 53 | 52 5 | ffvelcdmd | |- ( ph -> ( ( S _D F ) ` C ) e. CC ) |
| 54 | 53 3 | mulcomd | |- ( ph -> ( ( ( S _D F ) ` C ) x. A ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 55 | 50 54 | eqtrd | |- ( ph -> ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 56 | 47 55 | oveq12d | |- ( ph -> ( ( ( ( S _D ( S X. { A } ) ) ` C ) x. ( F ` C ) ) + ( ( ( S _D F ) ` C ) x. ( ( S X. { A } ) ` C ) ) ) = ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) ) |
| 57 | 3 53 | mulcld | |- ( ph -> ( A x. ( ( S _D F ) ` C ) ) e. CC ) |
| 58 | 57 | addlidd | |- ( ph -> ( 0 + ( A x. ( ( S _D F ) ` C ) ) ) = ( A x. ( ( S _D F ) ` C ) ) ) |
| 59 | 39 56 58 | 3eqtrd | |- ( ph -> ( ( S _D ( ( S X. { A } ) oF x. F ) ) ` C ) = ( A x. ( ( S _D F ) ` C ) ) ) |