This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product rule for derivatives at a point. For the (more general) relation version, see dvmulbr . (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvadd.f | |- ( ph -> F : X --> CC ) |
|
| dvadd.x | |- ( ph -> X C_ S ) |
||
| dvadd.g | |- ( ph -> G : Y --> CC ) |
||
| dvadd.y | |- ( ph -> Y C_ S ) |
||
| dvadd.s | |- ( ph -> S e. { RR , CC } ) |
||
| dvadd.df | |- ( ph -> C e. dom ( S _D F ) ) |
||
| dvadd.dg | |- ( ph -> C e. dom ( S _D G ) ) |
||
| Assertion | dvmul | |- ( ph -> ( ( S _D ( F oF x. G ) ) ` C ) = ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadd.f | |- ( ph -> F : X --> CC ) |
|
| 2 | dvadd.x | |- ( ph -> X C_ S ) |
|
| 3 | dvadd.g | |- ( ph -> G : Y --> CC ) |
|
| 4 | dvadd.y | |- ( ph -> Y C_ S ) |
|
| 5 | dvadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 6 | dvadd.df | |- ( ph -> C e. dom ( S _D F ) ) |
|
| 7 | dvadd.dg | |- ( ph -> C e. dom ( S _D G ) ) |
|
| 8 | dvfg | |- ( S e. { RR , CC } -> ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC ) |
|
| 9 | ffun | |- ( ( S _D ( F oF x. G ) ) : dom ( S _D ( F oF x. G ) ) --> CC -> Fun ( S _D ( F oF x. G ) ) ) |
|
| 10 | 5 8 9 | 3syl | |- ( ph -> Fun ( S _D ( F oF x. G ) ) ) |
| 11 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 12 | 5 11 | syl | |- ( ph -> S C_ CC ) |
| 13 | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
|
| 14 | ffun | |- ( ( S _D F ) : dom ( S _D F ) --> CC -> Fun ( S _D F ) ) |
|
| 15 | funfvbrb | |- ( Fun ( S _D F ) -> ( C e. dom ( S _D F ) <-> C ( S _D F ) ( ( S _D F ) ` C ) ) ) |
|
| 16 | 5 13 14 15 | 4syl | |- ( ph -> ( C e. dom ( S _D F ) <-> C ( S _D F ) ( ( S _D F ) ` C ) ) ) |
| 17 | 6 16 | mpbid | |- ( ph -> C ( S _D F ) ( ( S _D F ) ` C ) ) |
| 18 | dvfg | |- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
|
| 19 | ffun | |- ( ( S _D G ) : dom ( S _D G ) --> CC -> Fun ( S _D G ) ) |
|
| 20 | funfvbrb | |- ( Fun ( S _D G ) -> ( C e. dom ( S _D G ) <-> C ( S _D G ) ( ( S _D G ) ` C ) ) ) |
|
| 21 | 5 18 19 20 | 4syl | |- ( ph -> ( C e. dom ( S _D G ) <-> C ( S _D G ) ( ( S _D G ) ` C ) ) ) |
| 22 | 7 21 | mpbid | |- ( ph -> C ( S _D G ) ( ( S _D G ) ` C ) ) |
| 23 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 24 | 1 2 3 4 12 17 22 23 | dvmulbr | |- ( ph -> C ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) |
| 25 | funbrfv | |- ( Fun ( S _D ( F oF x. G ) ) -> ( C ( S _D ( F oF x. G ) ) ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) -> ( ( S _D ( F oF x. G ) ) ` C ) = ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) ) |
|
| 26 | 10 24 25 | sylc | |- ( ph -> ( ( S _D ( F oF x. G ) ) ` C ) = ( ( ( ( S _D F ) ` C ) x. ( G ` C ) ) + ( ( ( S _D G ) ` C ) x. ( F ` C ) ) ) ) |