This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | |- ( ph -> A e. RR ) |
|
| dvgt0.b | |- ( ph -> B e. RR ) |
||
| dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvge0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> ( 0 [,) +oo ) ) |
||
| dvge0.x | |- ( ph -> X e. ( A [,] B ) ) |
||
| dvge0.y | |- ( ph -> Y e. ( A [,] B ) ) |
||
| dvge0.l | |- ( ph -> X <_ Y ) |
||
| Assertion | dvge0 | |- ( ph -> ( F ` X ) <_ ( F ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvgt0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvge0.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> ( 0 [,) +oo ) ) |
|
| 5 | dvge0.x | |- ( ph -> X e. ( A [,] B ) ) |
|
| 6 | dvge0.y | |- ( ph -> Y e. ( A [,] B ) ) |
|
| 7 | dvge0.l | |- ( ph -> X <_ Y ) |
|
| 8 | 1 2 3 4 | dvgt0lem1 | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) ) |
| 9 | 8 | exp31 | |- ( ph -> ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( X < Y -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) ) ) ) |
| 10 | 5 6 9 | mp2and | |- ( ph -> ( X < Y -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) ) ) |
| 11 | 10 | imp | |- ( ( ph /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) ) |
| 12 | elrege0 | |- ( ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) <-> ( ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. RR /\ 0 <_ ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) ) |
|
| 13 | 12 | simprbi | |- ( ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. ( 0 [,) +oo ) -> 0 <_ ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) |
| 14 | 11 13 | syl | |- ( ( ph /\ X < Y ) -> 0 <_ ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) |
| 15 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 16 | 3 15 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 17 | 16 6 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. RR ) |
| 18 | 16 5 | ffvelcdmd | |- ( ph -> ( F ` X ) e. RR ) |
| 19 | 17 18 | resubcld | |- ( ph -> ( ( F ` Y ) - ( F ` X ) ) e. RR ) |
| 20 | 19 | adantr | |- ( ( ph /\ X < Y ) -> ( ( F ` Y ) - ( F ` X ) ) e. RR ) |
| 21 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 22 | 1 2 21 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 23 | 22 6 | sseldd | |- ( ph -> Y e. RR ) |
| 24 | 22 5 | sseldd | |- ( ph -> X e. RR ) |
| 25 | 23 24 | resubcld | |- ( ph -> ( Y - X ) e. RR ) |
| 26 | 25 | adantr | |- ( ( ph /\ X < Y ) -> ( Y - X ) e. RR ) |
| 27 | 24 23 | posdifd | |- ( ph -> ( X < Y <-> 0 < ( Y - X ) ) ) |
| 28 | 27 | biimpa | |- ( ( ph /\ X < Y ) -> 0 < ( Y - X ) ) |
| 29 | ge0div | |- ( ( ( ( F ` Y ) - ( F ` X ) ) e. RR /\ ( Y - X ) e. RR /\ 0 < ( Y - X ) ) -> ( 0 <_ ( ( F ` Y ) - ( F ` X ) ) <-> 0 <_ ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) ) |
|
| 30 | 20 26 28 29 | syl3anc | |- ( ( ph /\ X < Y ) -> ( 0 <_ ( ( F ` Y ) - ( F ` X ) ) <-> 0 <_ ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) ) |
| 31 | 14 30 | mpbird | |- ( ( ph /\ X < Y ) -> 0 <_ ( ( F ` Y ) - ( F ` X ) ) ) |
| 32 | 31 | ex | |- ( ph -> ( X < Y -> 0 <_ ( ( F ` Y ) - ( F ` X ) ) ) ) |
| 33 | 17 18 | subge0d | |- ( ph -> ( 0 <_ ( ( F ` Y ) - ( F ` X ) ) <-> ( F ` X ) <_ ( F ` Y ) ) ) |
| 34 | 32 33 | sylibd | |- ( ph -> ( X < Y -> ( F ` X ) <_ ( F ` Y ) ) ) |
| 35 | 17 | leidd | |- ( ph -> ( F ` Y ) <_ ( F ` Y ) ) |
| 36 | fveq2 | |- ( X = Y -> ( F ` X ) = ( F ` Y ) ) |
|
| 37 | 36 | breq1d | |- ( X = Y -> ( ( F ` X ) <_ ( F ` Y ) <-> ( F ` Y ) <_ ( F ` Y ) ) ) |
| 38 | 35 37 | syl5ibrcom | |- ( ph -> ( X = Y -> ( F ` X ) <_ ( F ` Y ) ) ) |
| 39 | 24 23 | leloed | |- ( ph -> ( X <_ Y <-> ( X < Y \/ X = Y ) ) ) |
| 40 | 7 39 | mpbid | |- ( ph -> ( X < Y \/ X = Y ) ) |
| 41 | 34 38 40 | mpjaod | |- ( ph -> ( F ` X ) <_ ( F ` Y ) ) |